

12th Collaboration Meeting of the BM@N Experiment at the NICA Facility Satbayev University, Almaty, Kazakhstan, May 13 – 17, 2024

Status of p-d femtoscopy

<u>P. Alekseev</u>, R. Lednicky, D. Peresunko, N. Pukhaeva, A. Stavinsky, N. Zhigareva, T. Rybakov for BM@N collaboration

2 725 618 entries

Target		p+	d+	p+d+
С	Carbon	30 668	5 682	1 586
Al	Aluminum	165 536	31 218	9 839
Cu	Copper	214 483	40 742	13 265
Sn	Tin	250 947	48 464	17 571
Pb	Lead	132 765	26 226	8 424
Total		794 399	152 332	50 685

Number of d^+ and p^+ in the event

BM@N Analysis Note: Production of p, d, t in 3.2 A GeV argon-nucleus interactions

Analysis team: M.Kapishin, L.Kovachev, V.Plotnikov, Yu.Petukhov, 6 I.Rufanov, A.Zinchenko

Motivation

Correlation function:

$$C(k^*) = rac{A(k^*)}{B(k^*)}
onumber \ k^* = rac{1}{2} \cdot |\overrightarrow{p_1^*} - \overrightarrow{p_2^*}|$$

- Femtoscopy method allows one to obtain an information on the space-time parameters of the production process
- Models of the hadronization predict decreasing the size of baryon formation area with transverse momentum in general and for strange baryons in particular
- It is important to compare the femtoscopic sizes obtained with different baryons

Status of baryon femtoscopy at BM@N

L.Kovachev, <u>A.Stavinskiy</u> for BM@N collaboration 10th Collaboration Meeting of the BM@N Experiment at NICA Facility, 14-19 May 2023

- BM@N experiment has already collected data with momentum resolution that is enough for femtoscopy analysis
- The easiest way to begin our planned baryon femtoscopy programme (pd, pp, pLambda, pn...) is to use particles with different masses or charges, e.g. the proton-deuteron femtoscopy
- Measured correlation function yields information on the "averaged" radius r₀ of the nucleon and deuteron sources, providing a known proton-deuteron FSI

Aims of the work

- Workout of method of correlation function calculation on BM@N experimental data
- Development of algorithm of the correlation function analysis taking into account FSI
- Obtaining the physical result: the effective radius of proton and deuteron sources

The FSI calculation assumes:

- a Gaussian r-distribution $\sim exp(-rac{r^2}{4r_0^2})$ where $r^2=(\overrightarrow{r})^2, \, \overrightarrow{r}=\overrightarrow{r_1}-\overrightarrow{r_2}$
- short-range FSI dominated by s-wave
- approximate account of the inner region of the short-range FSI potential (valid if r₀ is larger than the effective potential radius)

Calculated FSI correlation function:

P_t vs rapidity. ArSn 3.2 AGeV DCMSMM and exp. data

Correlation function

50685 5.486

3.01

2.296

1.263

. .

25

- 20

15

10

5

0

14 GeV/c

Correlation function for different proton momentum ranges (experimental dat

DCMSMM XeCsI 3.9AGeV

 χ^2 -test

r _o , fm	NDF	P < 2	3.2 < P < 4.3
1,8	28	43,67	33,32
2,0	28	37,36	31,58
2,2	28	32,97	31,16
2,4	28	29,79	31,47
2,6	28	27,56	32,23
2,8	28	26,02	33,25
3,0	28	25,04	34,38
3,2	28	24,46	35,56
3,4	28	24,21	36,73
3,6	28	24,19	37,86
3,8	28	24,34	38,93
4,0	28	24,62	39,94
4,2	28	24,99	40,88
4,4	28	25,41	41,75
4,6	28	25,88	42,55
4,8	28	26,37	43,28
5,0	28	26,88	43,96
6,0	28	29,35	46,59
7,0	28	31,49	48,39
No FSI	28	43,31	55,18

13.05.2024

The best matching r_0

12

Conclusion and further steps

- Results for correlation function calculation on BM@N experimental data provided
- Method of correlation function analysis developed and tested on BM@N experimental and simulated data
- Preliminary results for source radii of p-d pairs FSI for different particle momentum ranges are obtained

Next steps:

- Model:
 - Account of the p- and d-waves
 - Considering the deuteron as bound state*
- Analysis:
 - Finishing p-d on BM@N run 7 using full set of experimental data and appropriate Monte-Carlo statistic
 - Continue p-d on BM@N run 8 data
 - Go to p-p and other particles species
- * S. Mrowczynski, arXiv:2004.07029: $4r_0^2 \rightarrow 3r_0^2$ in r-distribution M. Viviani et al., arXiv:2306.02478: the above substitution is valid at large k only full 3-body calculation is needed

Thank you for attention!

P_t vs rapidity. ArSn, ArAl, all targets

pd correlation function

Fig. 4. The p-d and d-d correlation functions in different collision centralities in Au+Au collisions at $\sqrt{s_{\rm NN}} = 3$ GeV. The statistical and systematic errors are shown as vertical lines and grey bands, respectively. The colored bands represent the p-d and d-d correlations obtained with the deuteron from nucleon coalescence (red) in SMASH and directly produced from SMASH via hadronic scattering (blue), respectively.

STAR-(BES) ArXiv:2208.05722[nucl-ex],QM2022

Correlation of proton and deutron momentum

Estimation of multiplicity dependency

13.05.2024

Efficiency of closest tracks

Registered p-d pairs dP_{lab} relative to the mixing

Excluding low-efficiency area by dP_{lab} has no significant effect on the range of interest (k < 200 MeV/c)