Proton-deuteron femtoscopy in BM@N

- FSI correlations
- Calculation of p-d CF
- Summary

Final State Interaction

Similar to Coulomb distortion of β -decay Fermi'34: $\langle |\psi_{-\mathbf{k}}(\mathbf{r})|^2 \rangle$? t

Migdal, Watson, Sakharov, ... Koonin, GKW, LL, ...

FSI complicates CF analysis but makes possible:

- \rightarrow Femtoscopy with nonidentical particles πK , πp , ... including relative space-time asymmetries delays, flow
- \rightarrow Study "exotic" scattering $\pi\pi$, πK , KK, $\pi\Lambda$, $p\Lambda$, $\Lambda\Lambda$, $p\overline{p}$. the measurement of strange particle interaction is highly required to understand the properties (EoS) of neutron stars

pd - Woods-Saxon potentials

ruther wide potential ranges of 3-4 fm due to a large deuteron size

Effective range functions: $1/f_0+d_0k^2/2+...$ $(\rightarrow k\cot\delta \text{ if no Coulomb int.}):$ points — from pd phase shifts Arvieux'74 curves — from WS-potentials Jennings'86 \rightarrow problem for S=1/2

Coulomb contribution to CF vs r_0 $\rightarrow 1$ at large r_0

ΔCF from FSI WS-potentials at L=0 S=1/2 & 3/2 vs r₀ r₀ [fm] = 4-blue 3-orange 2-green 1.5-red points - exact

curves – approx. inner pot. region: OK for $r_0 > 3$ fm

ΔCF from FSI WS-potentials at L=1 S=1/2 & 3/2 vs r_0

- $\Delta CF(L=1)$ shifted to higher k
- $\Delta CF(L=1) \ll \Delta CF(L=0)$ at S=1/2
- $\Delta CF(L=1) \sim -\Delta CF(L=0)$ at S=3/2

Conclusions from pd CFs

- calculations for BM@N assume:
 - neglect of the deuteron structure
 - approx. inner integral using pd phase shifts Arvieux'74
 - s-wave dominance in strong FSI (exact Coulomb FSI)
- comparison with pd potentials Jennings'86:
 - discrepancy between phase shifts Arvieux and potentials Jennings (especially for S=1/2)
 - the potentials yield essential p-wave contribution at S=3/2
- careful p (d)-wave analysis is required
 (including possible dependence on total angular momentum neglected by both Arvieux and Jennings)
- 3-body effects should be estimated, e.g. Mrowczynski'20: $\exp[-r^2/(4r_0^2)] \rightarrow \exp[-r^2/(3r_0^2)]$ since coalescence: $r_0^2(d) = r_0^2/2$ Viviani'23: full 3-body calculation modifies the above ansatz at small k

Thank you for the attention