

12th Collaboration Meeting of the BM@N Experiment Satbayev University, Almaty, Kazakhstan, May 13-17, 2024

Analysis of data on Λ and $K^0_{\ s}$ production in Run 8

JOINT INSTITUTE FOR NUCLEAR RESEARCH

J. Drnoyan, I. Rufanov, V. Vasendina, <u>A. Zinchenko,</u> D. Zinchenko, R. Zinchenko *VBLHEP, JINR, Dubna, Russia*

Outline

- ✓ BM@N configuration
- ✓ Reconstruction of strange particle decays
- ✓ MC-to-data comparison
- ✓ Data quality checking
- ✓ Steps toward physics analysis:
 - ✓ Λ lifetime measurement
 - ✓ Λm_T spectra vs lifetime and rapidity
 - ✓ K_{s}^{0} lifetime measurement
 - ✓ K_{s}^{0} m_{T} spectra vs lifetime and rapidity

✓ Summary and next steps

Detector geometry in Run 8

A. Zinchenko

A selection: new vs old production

Production: Feb. 2024

Production: Dec. 2023

17.05.2024

A. Zinchenko

K⁰_s selection: new vs old production

Production: Feb. 2024

Production: Dec. 2023

A. Zinchenko

V0: Data vs MC

17.05.2024

A. Zinchenko

$\Xi^- \rightarrow \Lambda + \pi^-$ (20M events)

A. Zinchenko

Run quality checking

A. Zinchenko

HADES strangeness production studies

"Hyperon production in Ar+KCl collisions at 1.76A GeV"

A. Zinchenko

STAR strangeness production studies

"Strange hadron production in Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27, and 39 GeV"

A. Zinchenko

This material is a part of Roman Zinchenko's magister thesis

Lifetime of Λ : MC

Decay formula: $dN / dt = N_0 / \tau * exp(-t/\tau),$

 $N_0 = p0 * p1 = 54574$

Proper life time: $\tau = lm / (pc)$

Used statistics:

1M MC events 1M exp. data (run 7830)

Mixed background subtraction: Data

17.05.2024

A. Zinchenko

Fitted background subtraction: Data

17.05.2024

A. Zinchenko

Lifetime of Λ

Cuts: chi2s[0]>7&&chi2s[1]>5&&c2pv<5&&pts[0]>0.05&&pts[1]>0.1

Data corrected for efficiency

17.05.2024

A. Zinchenko

Lifetime of Λ

Selection:	Ω3>2.3	Ω3>1	3 cuts (4 bins)	5 cuts	3 cuts (9 bins)
<i>τ</i> , ns	0.301±0.014	0.302±0.016	0.270±0.011	0.240±0.008	0.262±0.008
Multiplicity	1.168±0.082	1.228±0.097	1.499 ± 0.100	1.359 ± 0.075	1.510 ± 0.082
χ^2 / NDF	0.71 / 2	2.61 / 2	1.01 / 2	1.50 / 2	8.22 / 7

3 cuts:	centr. Value	c2pv<4	c2pv<6	chi2s[1]>4	chi2s[1]>6	chi2s[0]>6	chi2s[0]>8
<i>τ</i> , ns	0.270±0.011	0.262±0.011	0.265±0.011	0.254±0.010	0.263±0.012	0.266±0.011	0.269 ± 0.012
Mult.	1.499 ± 0.100	1.430 ± 0.100	1.460 ± 0.100	1.360 ± 0.090	1.500 ± 0.110	1.420 ± 0.100	1.470 ± 0.100
χ²/NDF	1.01 / 2	1.00 / 2	0.63 / 2	2.23 / 2	1.49 / 2	0.88 / 2	1.10 / 2

17.05.2024

A. Zinchenko

Lifetime of Λ : upper and lower detectors

MC

Data corrected for efficiency

ΛM_{inv} spectra for lifetime 0.1-0.2 ns

Yields and efficiencies vs m_{τ} for different lifetimes

Corrected for efficiency m_{τ} spectra for different lifetimes

 Λ decay curve reconstructed from integrated m_{τ} spectra

0.7

Effective temperatures for different lifetimes

https://arxiv.org/abs/1010.1675v3

Boltzman distribution from HADES paper

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

Effective temperature (MeV)

 $T1 = 146\pm7$ $T2 = 158\pm8$ $T3 = 149\pm8$ $T4 = 163\pm13$

 $T MC = 122 \pm 4$

A: bins y vs m_T

17.05.2024

A. Zinchenko

Λm_T spectra in bins of y

https://arxiv.org/abs/1010.1675v3 Boltzman distribution from HADES paper

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

 $T = 198 \pm 12, 164 \pm 7, 138 \pm 4, 117 \pm 6 \text{ MeV}$

This material is a part of Roman Zinchenko's magister thesis

Lifetime of K⁰_s: MC

Decay formula: $dN / dt = N_0 / \tau * exp(-t/\tau),$ $N_0 = p0 * p1 = 427241$

Proper life time: $\tau = lm / (pc)$

Table value τ = 0.0895 *ns*

Used statistics:

1M MC events 1M exp. data (run 7830) BN

K⁰ invariant mass distributions

For different lifetimes

A. Zinchenko

12.05.2024

K⁰_s raw yield and efficiency

Efficiency-corrected yield vs lifetime

17.05.2024

A. Zinchenko

K_{s}^{0} efficiencies and corrected yields vs lifetime for different selection cuts

Cuts: chi2s[0]>7&&chi2s[1]>7&&c2pv<4&&ps[1]<3

From Monte Carlo

BM@

Data corrected for efficiency

A. Zinchenko

K⁰_s: efficiencies and decay curve

For 6 lifetime bins

Table mean lifetime value τ = 0.08954 ± 0.00004 *ns*

3 cuts:	centr. value	c2pv<3	c2pv<5	chi2s[1]>6	chi2s[1]>8	chi2s[0]>6	chi2s[0]>8
<i>τ</i> , ns	0.082±0.004	0.086±0.004	0.086±0.004	0.090±0.004	0.085±0.004	0.087±0.004	0.086±0.004
Mult.	0.473±0.036	0.457±0.036	0.492±0.038	0.436±0.034	0.471±0.037	0.473±0.035	0.473±0.037
χ^2 / NDF	2.73 / 2	2.27 / 2	2.27 / 2	2.72 / 2	1.06 / 2	3.40 / 2	2.26 / 2

17.05.2024

A. Zinchenko

$K_{s}^{0} M_{inv}$ spectra for lifetime 0.025-0.075 ns

Yields and efficiencies vs m_{τ} for different lifetimes

0.5

0.6

Corrected for efficiency m_{τ} spectra for different lifetimes

Effective temperatures for different lifetimes

https://arxiv.org/abs/1010.1675v3

Boltzman distribution from HADES paper

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

Effective temperature
(MeV)

T1 = 117±5

T2 = 113±5

T3 = 108±6

T4 = 125±16

$$\frac{10^4}{10^4} \frac{1}{0.2} \frac{10^4}{0.3 \text{ ms}}$$

 $T MC = 97 \pm 6$

K_{s}^{0} : bins y vs m_{T}

17.05.2024

A. Zinchenko

$K_{s}^{0} m_{T}$ spectra in bins of *y*

https://arxiv.org/abs/1010.1675v3 Boltzman distribution from HADES paper

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

T = 134±13, 129±8, 113±6, 73±4 MeV

Summary and next steps

- ✓ The procedure for \land and K_s^0 analysis was implemented
- \checkmark Checks with larger statistics are required.
- ✓ Centrality selection and trigger efficiency check are necessary.

Backup slides

Residuals vs station Nr. (run 7830)

Residuals in Si vs module Nr.

0.6

0.4 0.2

0

14

17.05.2024

A. Zinchenko

Residuals in X vs momentum in Si (q>0)

Data vs MC

17.05.2024

A. Zinchenko

Residuals in X vs momentum in Si (q<0)

Data vs MC

17.05.2024

A. Zinchenko

Residuals in X vs momentum in GEM (q>0)

Data vs MC

17.05.2024

A. Zinchenko

Residuals in X vs momentum in GEM (q<0)

Data vs MC

17.05.2024

A. Zinchenko

Residuals in Y

hy

Std Dev 0.3049

hy1

Entries 1040490

Std Dev 0.3076

538048

-0.004106

-0.01492

Entries

Mean

Mean

Data vs MC

Mean

-0.5

-1

Std Dev

0

-0.01492

0.3076

0.5

10²

-1.5

17.05.2024

A. Zinchenko

Yhit - Ytr (cm)

1.5

Efficiency of detectors (Si and GEM)

17.05.2024

A. Zinchenko

Geant4 tracks: Data vs MC

17.05.2024

A. Zinchenko