Performance studies towards flow measurements in the recent BM@N physical run

Mikhail Mamaev (JINR, MEPhI) Arkady Taranenko (MEPhI, JINR) Timofei Kuimov (MEPhI)

This work is supported by: the Special Purpose Funding Programme within the NICA Megascience Project in 2023 and the RSF grant No. 22-12-00132

BM@N collaboration meeting, 13/05/2023

Anisotropic flow & spectators

The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$arphi(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^\infty v_n\cos n(arphi-\Psi_{RP}))$$
Anisotropic flow:

$$v_n = \langle \cos \left[n (arphi - \Psi_{RP})
ight]
angle$$

Anisotropic flow is sensitive to:

- Time of the interaction between overlap region and spectators
- Compressibility of the created matter

Discrepancy is probably due to non-flow correlations

Describing the high-density matter using the mean field Flow measurements constrain the mean field

HADES: dv_1/dy scaling with collision energy and system size

- Scaling with collision energy is observed in model and experimental data
- Scaling with system size is observed in model and experimental data
- We can compare the results with HIC-data from other experiments(e.g. STAR-FXT Au+Au

dv_1/dy as a function of centrality

Weak centrality dependence for directed flow

The BM@N experiment (GEANT4 simulation for RUN8)

Centrality and particle selection

February production

- Half of the recent VF production was analysed
- Event selection criteria (~100M events selected)
 - CCT2 trigger
 - Pile-up cut
 - Number tracks for vertex > 1
- Track selection criteria : $\chi^2 < 5$; $M_p^2 \sigma < m^2 < M_p^2 + \sigma$; Nhits > 5

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where $\boldsymbol{\phi}$ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_{n}^{\ \text{EP}}$ is the event plane angle

Flow methods for v_n calculation

Tested in HADES:

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Azimuthal asymmetry of the BM@N acceptance

Symmetry plane resolution in Xe+Cs(I) collisions

All the estimations for symmetry plane resolutions are in a good agreement

Identification procedure

- Mass squared distribution is fitted in narrow bins of p/q
- Protons, pions, deuterons, tritons and helium are fitted

Purity is the function showing possible contamination

$$p_i(m^2, p/q) = \frac{f_i(m^2, p/q)}{\sum_{i=1}^N f_i(m^2, p/q)}$$

Systematics due to identification

Systematics due to identification (partial statistics)

Systematics due to tracking inefficiency (partial statistics)

Systematics due to symmetry plane selection

Residual effects of detector non-uniformity

v_1 for protons identifies with TOF-400 and TOF-700

Systematic errors on partial statistics

Tracking	Identification (purity)	Secondary	Non-flow	Non-zero v ₁ at y _{cm} =0	Total
Less than stat.	5%	2%	5%	2%	8%

Additional sources of systematics will be added

 $v_{_{1}}$ as a function of $p_{_{T}}$ and $y_{_{CM}}$

Summary

- New layout for the FHCal sub-events yields in larger resolution correction factor for all three sub-events
- v₁ systematics was studied varying the track selection criteria: small systematic errors is observed
- Measured v_1 is in agreement with JAM data for larger p_T values
- Slope of the directed flow in midrapidity is in agreement with STAR-FXT data
- Elliptic flow measured using half the available statistics: large statistical errors are observed, multidifferential measurements are not possible

v1: BM@N Run8 DATA: Xe+Cs@3.8A GeV

Proton identification

Proton candidates were selected with fitting the m² vs p\q

Selection criteria: <m>±2*o*

Deutron identification

Proton candidates were selected with fitting the m^2 vs p\q

Selection criteria: <m>±2*o*

Positive pions identification

Proton candidates were selected with fitting the m² vs p\q

Selection criteria: <m>±2*o*

Backup

(VF) v_1 vs y: Systematic variation due to Nhits-cut

(VF) v_1 vs y: Systematic variation due to chi2-cut

(VF) v_1 vs y: Systematic variation due to DCA-cut

FHCal Q-vector correlations (PLAIN)

FHCal Q-vector correlations (RECENTERED)

FHCal Q-vector correlations (RESCALED)

T- x F1 correlations

T- x F1 correlations (all steps)

Selecting the pseudorapididty window for T+ vector

Q-vector correlations (PLAIN)

R1: BM@N Run8 DATA: Xe+Cs@3.8A GeV

T-: all negatively charged particles with:

- 1.5 < η < 4
- p_τ > 0.2 GeV/c

T+: all positively charged particles with:

- 2.0 < η < 3
- p_τ > 0.2 GeV/c

Centrality with MC-Glauber for RUN8

Centrality with MC-Glauber for RUN8

v₁ vs y: Systematic variation due to Nhits-cut

v₁ vs y: Systematic variation due to chi2-cut

v₁ vs y: Systematic variation due to DCA-cut

Analysis setup

- The whole L1 production was analysed
- Event selection criteria (~40M events selected)
 - CCT2 trigger
 - 10^4 < Integral BC1 < 4×10^4
 - Number tracks for vertex > 1
- Track selection criteria

 \circ $M_{p}^{2} - 2\sigma < m^{2} < M_{p}^{2} + 2\sigma$

Proton p_T -y acceptance

Deutron p_{T} -y acceptance

Positive pion p_T -y acceptance

R1: BM@N Run8 DATA: Xe+Cs@3.8A GeV

T-: all negatively charged particles with:

- 1.5 < η < 4
- p_τ > 0.2 GeV/c

T+: all positively charged particles with:

- 2.0 < η < 3
- p_T > 0.2 GeV/c

R1: BM@N Run8 DATA: Xe+Cs@3.8A GeV

T-: all negatively charged particles with:

- 1.5 < η < 4
- p_τ > 0.2 GeV/c

T+: all positively charged particles with:

- 2.0 < η < 3
- p_T > 0.2 GeV/c

Difference can be explained by different centrality

QA Run-by-Run: FHCal

VF production was made with different versions of BmnRoot:

- ~7800-7900, 8050-8100, 8070-8300 -> v23.08.0
- other runs -> later version (dev)
- Different versions are incompatible

New centrality with MC-Glauber for RUN8

(See the talk of I.Segal)

Selection criteria

See the talk of I.Segal for details

- CCT2 trigger
- Cuts on pile-up
- More than 1 track for vertex reconstruction

Comparison with the world data

Validating the correction effects on data

Validating the correction effects on data

Systematics due to chi2 cut

We observe small variation due to χ^2 /ndf cut => small systematics

R1: BM@N Run8 DATA: Xe+Cs@3.8A GeV

T-: all negatively charged particles with:

- 1.5 < η < 4
- p_τ > 0.2 GeV/c

T+: all positively charged particles with:

- 2.0 < η < 3
- p_T > 0.2 GeV/c

SP R1: DCMQGCM-SMM Xe+Cs@4A GeV

SP gives unbiased estimation of v_n (root-mean-square) EP gives biased estimation (somewhere between mean and RMS)

Using the additional sub-events from tracking provides a robust combination to calculate resolution 58

New layout for fhcal Q-vectors

Results for new layout

New layout produces larger resolution => less statistics is needed

Systematics due to nhits cut

We observe small variation due to Nhits cut => small systematics

Systematics due to identification

We observe small variation due to cut on purity => small systematics

 v_1 as a function of pT and y (systematics due to non-flow)

JAM model reproduces the y-dependence of v_1 for larger p_T

 v_2 as a function of pT and y (systematics due to non-flow)

Half of all the available systematics was used

v_1 as a function of pT and y (systematics due to non-flow)

