Anisotropic flow measurements at Nuclotron-NICA and Equation of State

Petr Parfenov^{1,2,3}, Mikhail Mamaev^{1,2,3}, Valery Troshin^{1,2}, Arkadiy Taranenko^{1,2}

With big help from Andrey Moshkin (VBLHEP JINR) and Dmitry Podgainy (LIT JINR)

¹VBLHEP JINR, Dubna ²National Research Nuclear University MEPhI, Moscow ³INR RAS, Moscow

th BM@N Collaboration Meeting, Almaty, Kazakhstan, 12-18 May 2024

This work is supported by: the NRNU program Priority 2030, grant RSF no. 22-12-00132

Outline

- Introduction:
 - EoS for high badyon density matter

Anisotropic flow at Nuclotron-NICA

• Extracting EoS information using v_n

• Comparison of v_n results from models and experiments

- Comparison with HADES, STAR results
- Study of the E_{sym} at Nuclotron-NICA
- Summary and Outlook

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

New data is needed to further constrain transport models with hadronic d.o.f.

12th BM@N CM - flow and EoS

Anisotropic flow at Nuclotron-NICA energies

I. The passage time for removal of the shadowing by spectators $(t_{pass} = 2R/\gamma_{CM}\beta_{CM})$

Collision Energy $\sqrt{s_{NN}}$ (GeV)

Sensitivity of the collective flow to the EOS

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

EoS extraction: define incompressibility

$$K_0 = 9\rho^2 \frac{\partial^2(E_A)}{\partial\rho^2}$$

Discrepancy in the interpretation:

- v_1 suggests soft EoS ($K_0 \approx 210$ MeV)
- v_2 suggests hard EoS ($K_0 \approx 380$ MeV)

New measurements using new data and modern analysis techniques might address this discrepancy

Additional measurements are essential to clarify the previous results

XIII MPD CM

- The main source of existing systematic errors in v_n measurements is the difference between results from different experiments (for example, FOPI and HADES, E895 and STAR)
- New data from the future BM@N ($\sqrt{s_{NN}}$ =2.3-3.3 GeV) and MPD ($\sqrt{s_{NN}}$ =4-11 GeV) experiments will provide more detailed and robust v_n measurements

Sensitivity of the collective flow to the EOS

Models with flexible EOS for different (K_0, n_B) are required

Nuclotron-NICA coverage in terms of density: $2 \lesssim n_B/n_0 \lesssim 8$

Sensitivity of the collective flow to the EOS

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

- SMASH model with flexible EOS was used to test the sensitivity of the v_n to changes of EOS in a specific density range n/n_0 :
 - $2 < n_B/n_0 < 3$: dv_1/dy' and v_2 of pions, protons and deuterons are very sensitive to the EOS
 - $3 < n_B/n_0 < 4$: dv_1/dy' and v_2 of protons and deuterons are sensitive to the EOS
 - \circ 4 < n_B/n_0 < 5: weak sensitivity to the EOS

The most precise constraints can be achieved from the flow of identified hadrons ($\pi^{\pm}, K^{\pm}, p, ...$) and light nuclei (d, t, ...)

$v_n(y)$ in Au+Au $\sqrt{s_{NN}}$ =2.4 GeV: models vs. HADES data

Overall trend reasonably well described, but no model works everywhere

12th BM@N CM - flow and EoS

 $v_{1,2}(y)$ in Au+Au $\sqrt{s_{NN}}$ =3 GeV: model vs. STAR data

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

Model description of v_n :

- Good overall agreement for v_n of protons
- v_n of light nuclei is not described
- v_n of arLambda is not well described
 - nucleon-hyperon and hyperon-hyperon interactions
- Light mesons (π,K) are not described
 - No mean-field for mesons

Models have a huge room for improvement in terms of describing v_n

New STAR results from BES-II

New preliminary results from STAR BES-II were presented at QM-2023 for Au+Au at $\sqrt{s_{NN}}$ =3, 3.2, 3.5, 3.9 GeV

v_2 transition from out-of-plane to in-plane

Transition of v_2 from out-of-plane to in-plane can be a good tool to constrain models and extract information about EOS

- $v_2 \approx 0$ in midrapirity at $\sqrt{s_{NN}}$ =3.3 GeV for central and mid-central collisions for protons
- $v_2 < 0$ for peripheral collisions
- Models can not reproduce v_2 of π^{\pm} , K^{\pm} , K^0_{S} , Λ

Transition from out-of-plane to in-plane depends on centrality, rapidity and particle species

Event-wise flow correlations

B. Kardan, EMMI Workshop 2024

- Events can be characterized based on the event-wise magnitude of the elliptic flow $v_{2,event}$
- UrQMD can not discribe $dv_1/dy|_{y=0}$ of protons as a function of $v_{2,event}$
- Strong sensitivity to the EOS

С

-0.4

-0.3

-0.2

-0.1

 $p > 0.5 \, \text{GeV}/c$

0.2

0.1

0

Centrality: 20-30%

0.3

V_{2,event}

Event-wise flow correlations

shows strong sensitivity to EoS

Models overestimate v_4 of protons as a function of $v_{2,event}$ compared to the HADES data

Mean-field models do not reproduce experimental data on the event-wise flow correlations of protons

Symmetry energy in high-density region

X.X. Long, G.F. Wei, arXiv:2402.12912 (2024)

- Nuclotron-NICA density region: $2 \lesssim n_B/n_0 \lesssim 8$
- Symmetry energy E_{sym} has strong density dependence and can be described with its slope *L*:

$$L = 3\rho \frac{dE_{sym}(\rho)}{d\rho}$$

What observables can we use to extract information about *L*?

Using v_1^{np} to study L

X.X. Long, G.F. Wei, arXiv:2402.12912 (2024)

One can define free neutron-proton differential directed flow:

$$v_1^{np} = \frac{N_n(y)}{N(y)} \langle v_1^n(y) \rangle - \frac{N_p(y)}{N(y)} \langle v_1^p(y) \rangle$$

 $N_n(y), N_p(y), N(y)$ - total number of neutrons, protons and nucleons respectively

- v_1^{np} sensitive to both K_0 and L which may lead to ambigous interpretation
 - More observables might be necessary for robust study of L

Using dN/dy(n,p), $dN/dE_{kin}(n,p)$ to study L

Rapidity and kinetic energy distributions of n/p ratios can be used to study *L*

- n/p ratios show strong dependence on L and significantly weaker dependence on K₀
- n/p ratios require less statistics than anisotropic flow measurements

Using $dN/dE_{kin}(\pi^+,\pi^-)$ to study L

Rapidity and kinetic energy distributions of π^-/π^+ ratios can be used to study *L*

- Noticeable dependence on *L* and almost no sensitivity to *K*₀
- Requires less statistics than anisotropic flow measurements
- However, it might be a bit challenging to identify π^+ using TOF-400, TOF-700 near midrapidity at Nuclitron energies

X.X. Long, G.F. Wei, arXiv:2402.12912 (2024)

The BM@N and MPD-FXT experiments

Detectors used for anisotropic flow measurements:

- Tracking system: FwdSi+GEM (BM@N); TPC (MPD-FXT)
- PID: TOF-400, TOF-700 (BM@N); TPC, TOF (MPD-FXT)
- EP measurements: FHCal (BM@N), FHCal (MPD-FXT)

Comparison of MPD-FXT and BM@N performances

BM@N TOF system (TOF-400 and TOF-700) has poor midrapidity coverage at $\sqrt{s_{\rm NN}}$ = 2.5 GeV

- One needs to check higher energies ($\sqrt{s_{NN}} = 3$, 3.5 GeV)
- More statistics are required due to the effects of magnetic field in BM@N:
 - Only "yy" component of <uQ> and <QQ> correlation can be used

Despite the challenges, both MPD-FXT and BM@N can be used in v_n measurements:

- To widen rapidity coverage
- To perform a cross-check in the future

Summary

• Extracting EOS information from the measurements:

- One should consider baryon dependency for the incompressibility $K = K(n_B)$
- Observables can be sensitive to the EOS in different n_B/n_0 regions
- Comparison with STAR BES at $\sqrt{s_{NN}}$ =3 GeV and HADES at $\sqrt{s_{NN}}$ =2.4 GeV:
 - Good overall agreement with experimental data for v_n of protons using mean-field models with hard EOS
 - Models do not describe all particle species equally well (mesons, Λ, light nuclei)
 - Event-wise flow correlations of protons can not be described by current models

• Out-of-plane to in-plane transition of v_2 :

- This transition depends on beam energy, centrality, rapidity range, and particle species
- Symmetry energy study in Nuclotron-NICA:
 - v_1^{np} can be used to measure symmetry energy slope *L* but it requires a lot of statistics
 - n/p ratios of (y, E_{kin}) -dependencies are sensitive to L and less statistics hungry
 - π^{-}/π^{+} ratios of (y, E_{kin}) -dependencies are also sensitive to *L* however it might be challenging to measure π^{+} near midrapidity using BM@N TOF systems at Nuclotron energies
- Both MPD-FXT and BM@N can complement each other in terms of v_n :
 - Cross-checks can be performed to test the implemented flow measurement techniques
 - Using results from both experiments can widen the rapidity coverage no single fixed target experiment can achieve that!

New data from the BM@N and MPD (MPD-FXT) is required to address the discrepancies in the existing data and provide further constraints for the EoS in the models

Thank you for your attention!

Backup

Scaling with integral anisotropic flow

 $v_n(int.) \equiv |v_n^{int}| = |\langle v_n(p_T, y, \text{centrality}, \text{PID}) \rangle_{p_T, y}|$

- Scaling works at top RHIC and BES energy range
- Similar trend for pions, kaons and protons

$$|v_n^{int}|$$
 scaling: JAM MD2 model – Nuclotron energies

 $|v_n^{int}| = |\langle v_n(p_T, y, \text{centrality}, \text{PID}) \rangle_{p_T, y}|$

Scaling works for JAM model at $\sqrt{s_{NN}} = 2.4$ GeV for Au+Au, Xe+Cs and Ag+Ag collisions Provides a useful tool to make comparison of v_n results from different colliding systems

Scaling with v_1 slope

Scalings with $dv_1/dy|_{y=0}$ slope can be useful for comparison of the $v_n(y, p_T)$ results for different colliding systems

Scaling with system size

12th BM@N CM - flow and EoS