Review of methods for measuring collective flow and global polarization of Λ hyperons

Troshin V.^{1,2}, Parfenov P.^{1,2}, Taranenko A.^{1,2}

(1- JINR, 2 - MEPhI)

12th Collaboration Meeting of the BM@N Experiment at the NICA Facility

Outline

- Introduction
- Anisotropic flow and global polarization measurements
- Track crossing
- Reconstructed efficiency
- Radial distance asymmetry
- Detector occupancy
- Summary

Anisotropic transverse flow in heavy-ion collisions at Nuclotron-NICA energies

Strong energy dependence of dv_1/dy and v_2 at $\sqrt{s_{NN}} = 4-11$ GeV.

Anisotropic flow at FAIR/NICA energies is a delicate balance between:

- The ability of pressure developed early in the reaction zone
- Long passage time (strong shadowing by spectators).

Differential flow measurements $v_n(\sqrt{s_{NN}}$, centrality, pid, p_T, y) will help to study:

- effects of collective (radial) expansion on anisotropic flow
- interaction between collision spectators and produced matter
- baryon number transport

Several experiments (MPD, BM@N, STAR FXT, CBM, HADES, NA61/SHINE) aim to study properties of the strongly-interacted matter in this energy region.

Global Polarization at Nuclotron-NICA energies

• Predicted and observed <u>global polarization signals</u> <u>rise</u> as the collision energy is reduced:

NICA energy range will provide new insight

- $\Lambda(\bar{\Lambda})$ splitting of global polarization
- Comparison of models, detailed study of energy and kinematical dependences, improving precision
- Probing the vortical structure using various observables

J. Adam et al. (STAR Collaboration), Phys. Rev. C 98, 014910 (2018)

O. Teryaev and R. Usubov, Phys. Rev. C 92, 014906 (2015)

S. Singha, EPJ Web Conf. 276 (2023) 06012

 v_n of V0 particles: invariant mass fit method

 $N^{B}(m_{inv}, p_{T})$

Reasonable directed flow measurements for reconstructed $\boldsymbol{\Lambda}$

Measurements of global hyperon polarization

• Polarization can be measured using the azimuthal angle of proton in Lambda rest frame φ^*

$$\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi\alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_{\rm EP}^1 - \phi^*) \right\rangle$$

- Determine centrality
- Reconstruct Lambda
- Measure global polarization

- PV primary vertex
- V_0 vertex of hyperon decay
- dca distance of closest approach
- path decay length

$\Delta \phi$ -method

 $rac{dN}{d\Delta\phi_P^*} = p_0(1+2p_1\sin\Delta\phi_p^*+2p_2\cos\Delta\phi_p^*+2p_3\sin2\Delta\phi_p^*+2p_4\cos2\Delta\phi_p^*+\dots)$

Inv. mass fit method

- Use invariant mass distribution
- Calculate Sig/All, Bg/All ratios
- Fit $<\sin(\Psi_{EP} \varphi_{p}^{*})>$ as a function of inv. mass:

$$P^{SB}(m_{inv}, p_T) = P^{S}(p_T) \frac{N^{S}(m_{inv}, p_T)}{N^{SB}(m_{inv}, p_T)} + P^{B}(m_{inv}, p_T) \frac{N^{B}(m_{inv}, p_T)}{N^{SB}(m_{inv}, p_T)}$$

• Use
$$P^{s}(p_{T}) = \langle sin(\Psi_{RP} - \varphi_{p}) \rangle^{s}$$
 to find P_{H} :

$$\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi\alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_{\rm EP}^1 - \phi_p^*) \right\rangle$$

Track crossing and v_1 contribution

x

Problem: daughter particles tracks with opposite charges are bended in the opposite directions in the magnetic field, and these tracks may cross each other that leads 2 peaks distribution. **Solution:** fit signal with 2 gausses

Warning: with detector asymmetry it would provide the effect of v_1 on the polarization measurements and odd pseudorapidity dependence

> M.S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 104, L061901 (2021)

Generalized inv. mass fit method

M.S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 104, L061901 (2021)

Fit
$$P^{S} = \langle \sin(\Psi_{RP} - \phi_{p}^{*}) \rangle^{S}$$

in bins of $\phi_{\Lambda} - \phi_{p}^{*}$ for $\eta > 0$, $\eta < 0$ using
formula:
$$\frac{8}{\pi \alpha_{\Lambda}} \frac{1}{R_{EP}^{(1)}} \langle \sin(\Psi_{1} - \phi_{p}^{*}) \rangle^{sig} = \overline{P_{\Lambda}}^{true} + cv_{1} \sin(\phi_{\Lambda} - \phi_{p}^{*})$$
$$\bar{P}_{H} = \frac{1}{2} [\bar{P}_{H}(\eta > 0) + \bar{P}_{H}(\eta < 0)]$$

 α

This fit corrects effects of directed flow and acceptance contributions to $P_{\rm H}$

Global polarization: STAR results

M.S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 104, L061901 (2021)

No dependence within uncertainties

11

Corrections for reconstruction efficiency

Problem: collective flow and global polarization are the observables with amplitude ~ 10^{-1} - 10^{-2} and 10^{-3} correspondingly Very limited acceptance leads to increasing the fluctuations of the mean due to low efficiency **Solution:** weighting with relative reconstruction efficiency

$$\bar{\epsilon} = \frac{\int dy \int dp_t \frac{dN_{\text{Reco}}}{dy dp_t} \epsilon(p_t, y)}{\int dy \int dp_t \frac{dN_{\text{Reco}}}{dy dp_t}},$$

- Avoiding the shift of the mean
- Do not facing with the increasing of fluctuations

Corrections for the radial distance asymmetry

Radial distance R - is the minimum distance of the reconstructed track to the beam axis

Problem: asymmetry of the radial distance wrt. vertex. **Solution:** take the R distribution in the inv. mass range under the peak of Λ and calculate the weights that do this distribution flat after the correction

Corrections for detector occupancy

Problem: efficiency loss due to strong varying track densities

Result: effect on v_1 pseudorapidity dependence

Solution:

- centrality bins for occupancy
- $\epsilon(N_{\text{track}}) = \epsilon_0(1 k \cdot N_{\text{track}})$

To obtain corrections due to occupancy for Λ the multiplication of proton and pion occupancy is used:

 $\epsilon_{\Lambda} = \epsilon_p \cdot \epsilon_{\pi^-}$

- Very high effect on v₁ slope that cannot be explained with systematics
- Occupancy corrections for Λ is not working correctly

Summary

- Inv. mass fit method is a standard method for v_n measurements of V0 particles
- $\Delta \varphi$ -method and inv. mass fit method gives reasonable result for global polarization measurements
 - Generalized inv. mass fit method is possible to correct acceptance effects and directed flow contribution
- Corrections reconstructed efficiency and radial distance asymmetry provides a reasonable effects
- Corrections for detector occupancy are still important to be studied

Thank you for your attention!

BACKUP

Corrections for reconstruction efficiency

- cut efficiency < 0.3
- Provide a relative efficiency
- Smooth it by Savitzky-Golay filter