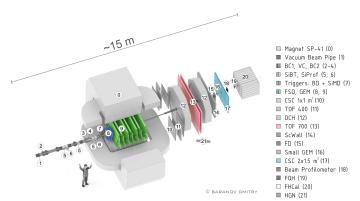
Status of the π^{\pm} , K^{\pm} analysis in the Xe+CsI run

K.Mashitsin, S.Merts, S.Nemnyugin

16/05/2024

The main goal of the analysis

- Identifying π^{\pm}, K^{\pm}
- ullet Estimation of the π , K mesons production cross section


Outline

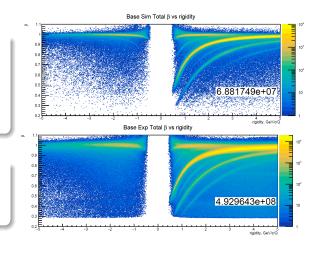
- Track selection algorithm
- Filtering experimental data
- Comparison of Monte Carlo data and experiment
- Preliminary signal distribution for Pions and Kaons

Current BM@N Run-8 geometry

FSD + GEM: Rigidity = ρ/q

Time-Of-Flight detector TOF-700: $\beta = l/tc$

Input data


Information from global tracks

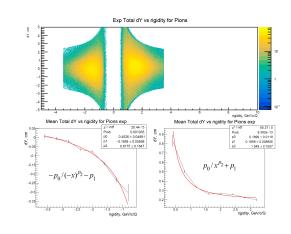
Monte Carlo

- Generator: DCMSMM
- System: Xe + Csl
- Energy: 3.9 AGeV

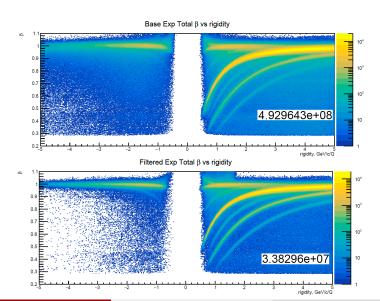
Exp data

- System: Xe + Csl
- Energy: 3.9 AGeV

Filtering experimental data


Selection criteria for reliable experimental tracks:

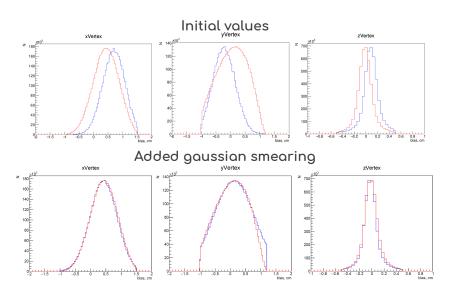
- Minimum 5 hits in FSD+GEM
- Z position of TrackParamLast is more than 200 cm (last two GEM stations)
- Impact factor of track less than 1 cm
- Re-extrapolation of the track from the TOF hit to the vertex.
- Vertex in range $V_x \in (-1,1.5) \text{cm}; V_y \in (-1,1.2) \text{cm}; V_z \in (-0.5,0.5) \text{cm}.$


Alignment algorithm: momentum corrections

- Propagate each track to the detector plane
- Create histograms with all track-to-hit(track) connections from momentum
- Every 400 MeV, project the residuals onto the Y plane
- Fit distibutions by gaus + ρ ol2 to get $\mu_{D_x}(\rho/q)$ and $\sigma_{D_y}(\rho/q)$
- Fit all μ_{D_y} and σ_{D_y} by exponential function

Before/After

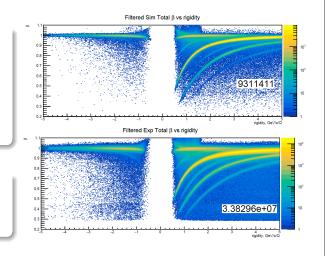
Exp and MC comparison parameters


We will compare MC (blue line) and Exp (red line) on the Xe+CsI data.

Data parameters

- Vertex distribution
- Number of tracks in event
- Number of hits in FSD + GEM tracks
- Residuals in TOF-700

Smearing vertex

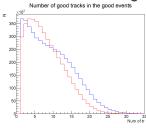

Filtered data

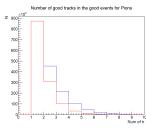
Monte Carlo

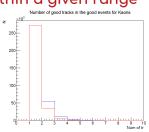
- Generator: DCMSMM
- System: Xe + Csl
- Energy: 3.9 AGeV
- Smearing Vertex

Exp data

- System: Xe + Csl
- Energy: 3.9 AGeV

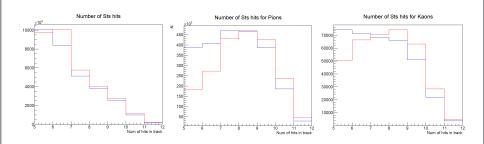


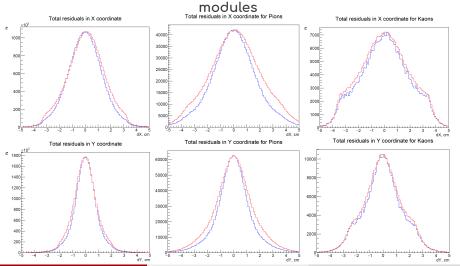


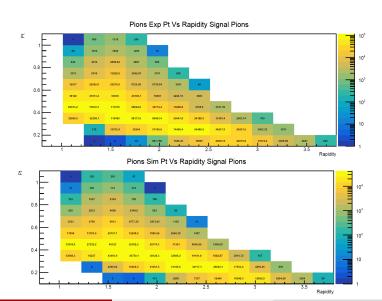

Number of tracks in event

A good track is a track selected after filtering procedures
A good event is an experimental event that has at least one
good track

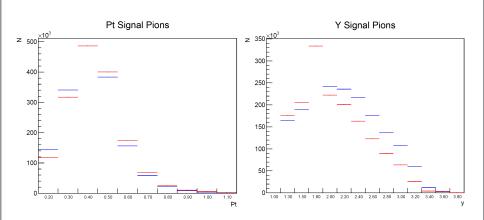
The vertex of a good event must be within a given range



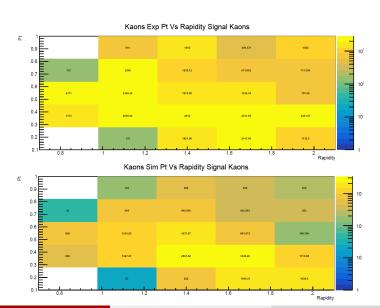

Number of hits in FSD + GEM tracks


Residuals in TOF-700

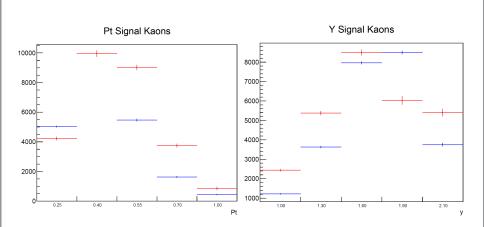
In the future, it is planned to compare the residuals in individual



Preliminary signal distribution for Pions



Preliminary signal distribution for Pions



Preliminary signal distribution for Kaons

Preliminary signal distribution for Kaons

Summary

- Algorithms for filtering experimental data have been implemented
- The vertex smearing parameters were selected
- Parameters of MC tracks in a good agreement with the the experimental data
- Preliminary signal distribution for Kaons and Pions were obtained

12th Collaboration Meeting

Thank you for the attention!

Backup