ML-based neutron reconstruction in the HGND at the BM@N experiment

BM@N 12th Collaboration Meeting,

Vladimir Bocharnikov, HSE University on behalf of the HGND group

16.05.2024

EOS for high baryon density matter

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

V. Bocharnikov. 12th BM@N Collaboration meeting

$$(
ho,0)+E_{sym}(
ho)\delta^2+O(\delta^4)$$

$$\delta = (
ho_n -
ho_p) /
ho$$
 - Isospin asymmetry

- Neutron flow measurements are essential to further constrain symmetry energy
- Sensitive observables:

Anisotropy flow coefficients:

 $\frac{dN}{d\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\phi - \Psi_{RP})], \ v_n = \langle \cos[n(\phi - \Psi_{RP})] \rangle$

Notivation

Measurements of neutron flow and yields require reconstruction of neutrons

Neutron reconstruction task:

- Identify neutrons produced in reaction in presence of background use of high granularity
- Reconstruct neutron kinematics:
 - Kinetic energy time-of-flight (ToF) method
 - Angular information can be extracted by "point-like" detector approximation or by use of high granularity
- Multi-parameter task ⇒ may benefit from **ML-based methods**

З

Highly granular time-of-flight neutron detector (HGND)

Longitudinal structure

- •(2x) 8 layers: 3cm Cu (absorber) + 2.5cm Scintillator + 0.5cm PCB; 1st layer — 'veto' before absorber →Total length: ~0.5m, ~1.5 λ_{in}
- ➡ neutron detection efficiency ~60% @ 1 GeV
- Transverse size: **44x44 cm**²
- 11x11 scintillator cell grid

V. Bocharnikov. 12th BM@N Collaboration meeting

Active layer

- scintillator cells:
 - size: 4x4x2.5 cm³,
 - total number of cells: 968 (x2)
 - individual readout by SiPM
 - •expected time resolution per cell: ~150 ps

Configuration and Simulations

- •HGND sub-detectors are located at 10° to the beam axis at ~7m from the target
- Monte-Carlo event simulations:
 - DCM-QGSM-SMM model + Geant4
 - ~600K events Bi+Bi @ 3 AGeV
 - Only top sub-detector will be discussed further

V. Bocharnikov. 12th BM@N Collaboration meeting

Particles entering the HGND

- Logical volume on the HGND upstream surface is used to capture particles in the detector acceptance
- No access to hit-level labelling within event
 particular hits caused by neutron species are not known
- Primary neutrons:
- Produced in reaction
- E_{kin} > 0.4 GeV to minimise admixture of background neutrons
 - Energy cut will be done after reconstruction to minimise bias
- Binary identification problem is approached. Events with neutron multiplicity >1 are considered as "single neutron events"
- Energy reconstruction is aimed to reconstruct energy of fastest signal neutron in event

Energy spectrum per particle type

Neutron ToFenergy

Graph Neural Networks (GNN)

Why Graph Neural Networks:

- Natural vector event representation
 - Detector cell hits as graph nodes
- Easily applied to sparse data with variable input size
 - Typically we have signal only in small fraction of sensors
- Captures event structures
- Increasing number of successful implementations in HEP

Message passing architecture

Key idea:

- Edges propagate information between nodes in a trainable manner to encode local graph structures
- Node embeddings are then aggregated to a problem-specific value, e.g.:
 - Graph class "probability" signal/background
 - Target value neutron energy

Reconstruction procedure

Signal event labeling using upstream surface:

- at least 1 neutron: Ekin > 100 MeV, Angle to z axis $10^{\circ}\pm5^{\circ}$, $\delta(E_{ref}) < 40\%$, $E_{target} = max(E_n)$
- ~40% signal events
- significant background contribution
- more detailed MC particle tracking is under development to improve true neutron selection

Selected signal events. Energy spectrum

V. Bocharnikov. 12th BM@N Collaboration meeting

Graph construction:

- Nodes hits. Observables per hit:
 - hit coordinates; Edep > 3 MeV ~ 0.5 MIP; EToF
 - additional global event node with 4 parameters
 - Constructed event graphs are split 50/50% to train and test procedure
 - 2 independently trained models:
 - Classification GNN
 - target variable signal label (0/1)
 - Energy regression GNN
 - target variable max(E_n) per event
 - only signal events are used to train for energy regression model

Reconstruction procedure

Signal event labeling using upstream surface:

- at least 1 neutron: Ekin > 100 MeV, Angle to z axis $10^{\circ}\pm5^{\circ}$, $\delta(E_{ref}) < 40\%$, $E_{target} = max(E_n)$
- ~40% signal events
- significant background contribution
- more detailed MC particle tracking is under development to improve true neutron selection

Selected signal events. Energy spectrum

V. Bocharnikov. 12th BM@N Collaboration meeting

Graph construction:

- Nodes hits. Observables per hit:
 - hit coordinates; Edep > 3 MeV ~ 0.5 MIP; EToF
 - additional global event node with 4 parameters
 - Constructed event graphs are split 50/50% to train and test procedure
 - 2 independently trained models:
 - Classification GNN
 - target variable signal label (0/1)
 - Energy regression GNN
 - target variable max(E_n) per event
 - only signal events are used to train energy regression model

Classification performance

- class score threshold
- background admixture

Neutron energy reconstruction

10

eV

Ú

Epred

0 ↓ 0

Test sample. 66159 signal events.

- well pronounced linear correlation up to 3-4 GeV
- For energies 2-4 GeV model compensates ToF overestimation
- Model tends to predict most probable values ⇒ asymmetric uncertainties

Neutron energy spectrum for test dataset (163327 events) after applying classification and energy regression models

- Spectra become closer by increasing classification score threshold
- Tails are less consistent between true and predictions
- Energy reconstruction GNN was not trained to predict 0 energies \Rightarrow

background contribution spread over energy spectrum

possible solution: combined training

For a performance study of neutron flow measurements one needs model with:

- Realistic spectator fragments
- Realistic flow signal

Problem: there is no such model at the moment!

V. Bocharnikov. 12th BM@N Collaboration meeting

Neutron flow status

SMM model to have realistic flow signal

Simple afterburner has been prepared for the UniGen format

Next steps:

- Simulation and reconstruction within BmnRoot framework
- Flow measurements

Slide by P. Parfenov

- Neutron reconstruction in the HGND is performed in 2 steps: classification, energy reconstruction. Machine learning approach and preliminary results are discussed. High multiplicity scenario to be addressed
- - Hit-level labelling within event is under implementation in the BMNRoot
 - Utilise information of charged tracks projected to the HGND surface
 - Classical baseline neutron reconstruction is under development (see <u>next talk</u>)
- Performance study of neutron flow measurements is under preparation:
- Afterburner for realistic flow signal in DCM-QGSM-SMM is prepared
- Simulation and reconstruction is underway

Summary and Outlook

Backup

Neutron event classification

Neutron event classification

Event displays on test dataset

V. Bocharnikov. 12th BM@N Collaboration meeting

0.01

- 0.02

0.05

0.04

0.03

Neutron event classification

Event displays on test dataset

V. Bocharnikov. 12th BM@N Collaboration meeting

- 0.01

Heterogenious GNNs

Heterogenius GNN Model:

- graph construction:
 - Hit nodes
 - Edep, EToF, **pos**
 - Track nodes (e+-, p+-)
 - **pos**, **p**
 - global node
 - nHits, eToF_max, eToF_med,Esum

<u>GraphSAGE</u> (SAmple and aggreGatE) architecture GNN:

Aggregate feature Sample neighbourhood information from of graph nodes V. Bocharnikov. 12th BM@N Collaboration meeting

Get graph context embeddings for node using aggregated information

GNN Model architecture:

- Radius graphs with r = 5cm
- 8x GraphSAGE message passing layers with 512 hidden channels MLP readout layer
- Binary Cross Entropy loss function for event classification
 - Only signal events are used to train for energy regression model
- Mean Squared Error loss function for energy regression

Neutron reconstruction

threshold = 0

Y_{true}

Background contribution reconstructed energy is distributed similarly to signal neutrons

V. Bocharnikov. 12th BM@N Collaboration meeting

threshold = 0.5

threshold = 0.8

V. Bocharnikov. 12th BM@N Collaboration meeting

Imaging capabilities of the HGND

Detector image signatures:

- tracks of charged particles
- compact electromagnetic showers
- sparse and irregular hadronic showers
 - no upstream track for neutral hadrons (including **neutrons**)

Charged particle track background

E/m shower background

Observables per hit:

- (X, Y, Z)hit
- E_{dep} (>3 MeV)
- T_{hit} + $N(0,\sigma = 150ps) < 40ns$

Signal event labeling: • neutron,

- • $E_{kin} > 100 \text{ MeV},$
- •Angle to detector axis $< 10^{\circ}$
- • $\delta(E_{ToF}) < 40\%$

V. Bocharnikov. 12th BM@N Collaboration meeting

Data labeling

272844 events in total with deposition >3 MeV

- 21917 signals fastest
- median 34670 signals
- reference 58949 signals

Energy correlation for selected signal events:

