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Uncoupled Motion

B Linearized equation of motion
x"+(K+k)x=0 where: K.(s)=K, =eB (s)/Pc  k(s)=k=eG(s)/ Pe

B Solution in matrix form
x(s)] My (s) M) ][ x(0)
{ms)HMmm Mzz(sﬂmm} or | X(5) = M(5)x(0)

B Conservation of the Phase Space Volume - Liouville theorem
= The phase space volume is conserved in the course of motion => |M| =1

= The conservation of the phase space volume is also justified for multidimensional
motion. It is called Liouville theorem

B Eigenvectors: Mv, =4v,, k=12
B For arbitrary stable turn-by-turn motion: v.=v, =v,=v, v,=v
B Then, at a given place, the position at n-th turn:

X, = Re(/I” (4v)+A™ (sz*)) = Re(/ln (C V)), C=A4+A4,

%

—1 27
¢ The betatron tune: A=e ™ =™
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X-Y Coupled Motion

B Linearized equations of motion

x"+(Kx2 +k)x+£N—%R'jy—Ry'=O

y”+(Ky2 —k)y+£N+%R’jx+Rx’:O

where: K, (s)=K, , =eB, (s)/Pc k(s)=k=eG(s)/Pc, N=eG /Pc R=eB, /Pc

B Canonical variables

__ R
<px x4
canonical momenta are: . R
py_y +Ex
x| x| 1 0 0 0
. | Ps 0, 0 1 —-R/2 0
. A X = , X= , R:
In matrix form: X = Rx y y 0O 0 1 0
Py 0, | R/2 0 0 1
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Matrix Form of Equations for X-Y Coupled Motion

Kj+k+RT 0 N —R/2
| R, o 0 1 R/2 0
H—Ex Hx where voom kB
~R/2 0 0 1
Then the motion equations are (0 1 0 O]
dx . -1 0 0 0
—. = UHx “Zlo 0 0 1
ds
O 0 -1 O

B Similar to 1D-motion we introduce 4-dimensional - -
transfer matrix for the 2-dimensional motion:
X = M(O,S)f(o ,
The cap denotes that the canonical variables (momenta) are used
B Motion Symplecticity
M'UM =U | or glternative form |[MUM' =U

B Thus, out of 16 matrix elements of matrix M the motion symplecticity leaves

only 10 elements being linearly independent
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Symplecticity of Eigen-Vectors
MV, =4V, k=1,..4

B For stable motion the eigen-vectors always appear in two reciprocal pairs,
and, consequently, the four eigen-values split into two complex conjugate
pairs: A1, 4 and A2, 22" (since real M)

For 41#12 (non-degenerate case) we obtain the orthogonality condition

v, Uv, =20,
A+ A .

A frrn . v, Uv, =21 |, 30UV, =-2;
v, UV, =0, Normalizing L Vo UV, =20,

. A ~ — AT A B
9°UV, =0  ifi=j,  eigen-vectors Vi UVi=0 . %U%,=0 .

. A T A A+ A~

STy = we obtain: v, Uvi=0 , v,’Uv; =0
v, Uv, =0,

Out of 2 complex conjugated vectors we choose one which satisfies the
normalization condition. Normalization of CC vector has different sign.
¢ Stable betatron motion requires |/1k| =l A=A, 4=4
¢ Then the motion is described

xn:Re(ﬂq”’(A1V1)+12”(A2V2))=Re(ﬂln(e’”’l 211V1)+ﬂ,2”(ei"’2 2]2V2))

. _ iy o 270,
¢ Introduce betatron frequencies so that A,=e " =e
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The Eigen-vector Parameterization

B For uncoupled motion the JB(s)

normalized eigen-vectors are v=v(s)=| i+a(s)| , {Vl B V*

_— % _ V,=V
¢ we define that Im(v,(s))=0 q :{ 0 1}
{V+SV==—2i, S:{o 1} -1 0
viSv=0 and v;Sv,=0, -1 0 ] e

B For coupled motion the normalized i(l—ul)x+a1x o +2;2x .

eigen-vectors are in extended Mais- |7 J5" A 5.

Ripken parameterization is Vi= g [ V2 = JB.
B The betatron motion is described by uta, i(l-u)+a,,

10 linearly independent functions: - \/ﬂTyy " I

4 B-functions, 4 a-functions, and 2 - : - -
betatron phase advances
B Symplecticity yields u, v & v» from known o's & B's.
¢ However, there are 4 solutions & additional info is required to choose a's & B's.
In practice, for a ring we, first, find the eigen-vectors from known transfer

matrix, and, then unique solutions for all 4D-Twiss functions
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Courant-Snider Invariant o7y 1 S
B Tn uncoupled motion | /""’(\mﬁ
¢ Betatron amplitude S ]
¢ Maximum angle /
¢ Local angular spread |
B Courant-Snyder invariant for uncoupled motion /
2 | %
2] = v+5x\2 = BO* +2ax0 + lta | ’
: o
B In coupled motion | :‘VL;SX‘
B Beam boundary in 4D phase space
$'E2x=1, E=UVEV'U’ /g, 0 0 0
T v 0 1/g 0 0
where: V:[Vl VY2 Y } Tl o 0 1/e 0
0 0 0 1/

g1 and &> are invariants of motion
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1D and 2D Emittances

B We define the beam emittance as a product of the ellipsoid semi-
axes (omitting the factor 7°/2 correcting for the real 4D volume of

the ellipsoid): 1 1

4D VoY VoY VoY VoY VoY
p—f = = p— p— |
\/“:‘11:‘22:‘33:‘44 \/det(:)

/g, 0 0 0 |
. 0 1/¢ 0 0
| C e e I : — : El: 1
onhsequently £&, =&, 0 Ve 0
0 0 0 1/¢, |
. . . . A 1 IAT,;,\
B (Gaussian distribution: f(X)=————exp| ——X =X
4 g, 2

B Second order moments

N

1 | QS

__An . AA A A4 . AA AT o A A4

X, =X, —jxixjf(x)dx S inies jxl.xj exp _EX =X (X
12
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Perturbed Betatron Motion (Uncoupled Case)

B In transfer line LAY T T
A l
pu 1 Mty ] R W
~ ) b=— 5
B(u) 1_®ﬂ081n(2(ﬂ_ﬂ0))9 H > Hy, F 5
. 05- : =
B Inaring 5
4 i ] 1 1
CACINS .(Dﬂ cos( t, —24) 2 4 6 & 10
Bu)  sing,
Alu:lCDIB |, ARG o | B o
’ i o S—— LT _
The stopband width L i
Ap, =-Dpf 0.5F ﬁ:*-|3|:,-=lil.1 S v=145 -
i ®-fy =01
2 5 S T S S S e S B

B Oscillations are
happening at double
betatron frequency

1] 0.1 0z 03 0.4 0.5 0.6 ) 0& na 1

pe2
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Perturbation Theory for Symplectic Motion

The symplecticity enables to build an effective perturbation theory
M'UM=U = M=U'M'U

For the perturbed
motion one can write: (I+AM)MY, =(4, +A1,)¥,

¢ M - symplectic

¢ transfer matrix, (I+AM)M | is not required to be symplectic
Account relationship between eigenvalue corrections and the tune
shifts

AQ, =i/ (4r) (A4, ] 4,)

We obtain corrections for betatron tunes

1
AQI = —E V1+U AM Vl
p
1
AQZ = —E V2+U AM V2
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Problems for Lectures 1&2

1. For uncoupled betatron motion prove that the normalization of eigen-vectors, v,"Sv, =-2i,
yields that du/ds=1/f and a=—(1/2)df/ds (For the proof use top Eq. of page 7)

2

- e \A(s)
' i(y—u(s)) i(y—pu(s)) X =
From page 6: X(S)ZﬁRe(e’“”_”(”)V):ﬁ(e - - j VERJ = V(s){im(s) : {: _VV*

JB(s) T
JBG) S5y | | (@ 1a))(2VF)]
|::> éz\/zi ei(wfﬂ(S)) i+ ( ) +CC :\/zei(w;t(s» l-d_:u i+ ( ) + ) +CC
_ _ Il+a(S
ds 2 ds A 2 ds s d|itals)
JB(s) JB(s) ds\ \/B(s)

On other hand in the first order

-
+CC

1 ds 1 ds swuon|
X+dx = 4o 1 X = 4D 1 e _ita(s)
B(s)

7 .
Compare the top rows of matrix equations: dx:\ge’“”“” —l+a(S)JdS+CC \E muts) [zdy\/ﬂ(S) 3 ,B(s)]

B(s)
du 1
z+a(s) d,u 1 ﬂ ds  p(s)
= e e e T g
2 ds
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2. Prove that if v is the eigen-vector for matrix M corresponding to the one turn matrix
starting at s=0 (point 1) then the vector Mi2 v will be the eigen vector of the transfer matrix

corresponding to the point 2. Here My2 is the transfer matrix from point 1 to point 2.
M=MM,, Myv-=A1y,

M, (MM, )v=AMyv, MM, (Mv)=1(M,v),

3. Find 2D analog of Courant-Snyder invariant
X=Av,+4,v,+CC
XUv, =(4v,+4,v,+CC) Uv, = 4v,"Uv, =-2i4,

112

JB.
0 1 0 o] _il-u)ta,
S T 10 0 0 JB.
|A1| =—|x le‘ :—[x 0 vy 9,] , = const
4 4 dlo 0 0 1 Be"
0 0 -1 0l wwta, ,
b,

! 14 !

A A A

4. Prove that matrix V = |:€’1 =V LV, Y, } is symplectic
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5.  Fill missed calculations in computation Z=VE"'V' =E"

1 1
_arn A4 _ A A _ Tl: ~4
2. =xx, = le.xjf(x)d = e, Ixixj exp( 5 X _xja’x

N

Introduce new variable y =V

1
2
4.,

'X then

ij

1
ViV VoV exp(—EyTVTEVyjdy“

l/eg£,| © 0 0
0 1/, 0 0
0 0 /g 0
0 0 0 1/e

Account that = =V'EV where & -

1 1
X = V.V, exp| ——y' Ey "
iy 472'2(91(92 in lm_‘.ynym p( 2y yj y

1 1 T e 4
Matrix K = Jy”y’” eXp(_Ey nyjdy is diagonal K=
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Prove that for a symplectic matrix, defined by the following equation M'UM=U |, (a)its
M|=1,(b) M =U'M'U and (c) the matrix also satisfies to MUM' =U

determinant is

A

M

Y

q) det(M'UM)=detU = [’ o1 = M=+

1\7[‘:1 =

Only sign + is right since the total matrix is a multiplication of matrices for infinitesimal
M (=1

displacement for which

N

)y (MUM=UM' = UM'=M'U = U (UM'=M'U) = M'=UM'U
c)

MU( M UM = U) - (MUMT)UM - MUU = -M

((MUMT)UM _ —M)M1 - ((MUMT)U - —I)U — MUM’ =U

where we accounted that UU =-1
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7. Assuming that the motion after exit from KRION ion source is uncoupled and described
uncoupled Twiss-parameters find equations describing the horizontal and vertical rms sizes
in the downstream beam transport for two below cases.

(1) Ions exit at the axis of magnetic field. Beam parameters at the ion source center:
magnetic field - Bo, ion rms beam size - o, fransverse temperature - T.

(2) Now add that the ions exit solenoid with offset ro directed at angle 6 from the
horizontal plane.
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(1) First, we find bilinear form describing the distribution inside solenoid
The distribution function in the magnetic field:

2
X
f(x,é’x,yﬁy)=e><p(— 5

+)/2 _(9x2+9y2)

2
o)

mvy, | _
- |=exp| -

2

x2 +y2 B gxz +9y2
20,’

20

Then transiting to canonical variables, we obtain for matrix E (x E x = 1)

[xl

1 0
0 1
0 0
(R/2 0

0 0
“R/2 0
| 0
0 1
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T

1/ 57
0
0
0

[1]
||

0
/o,
0
0

0
0
1/ o?

0

0
0
0

/o0,

1 0 0 O]
0 1 —-R/2 0
0O 0 1 0
R/I2 0 0 1
_R
[
[
R
2
o
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We could extract the emittances and Twiss parameters directly from = using the
following procedure suggested in <Lebedev, Bogacz>

the beam emuttances £ and & can be computed from matrix L as roots of its characteristic

equation,

detlZU +i2I)=0 g=A_ @227
while the equations for the eigen-vectors are

IZU +igIf, =0 . (2.28)

However, we can simplify the solution if we account symmetry of the problem.
We assume that the distribution is described by the circular modes with unknown beta-

function and, additionally, we will need to find two mode emittances. The eigen vectors
are:

Bl O[] [0 o

i i 1 1

N A 2B 2P
0 —JB JB 0

iJB |
b BRI 0
28 | 2B 2JB 2B

0 0

Then matrix E is:

N o NV AN AN

==UVEV'U’, Z=diag(l/¢,1/¢,1/¢,,1/¢,)
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Substituting we have

By hEg 1 1
0 1] -
4 !lEl EE 251 2 EE
3 3 1 1
1] —_ - — - — 1]
_ £y Eqg 252 2E1
1 S
1] _ . 1]
252 251 4--35152
1 1 A 3
- 1] 1] —+ —
2'\'_1 2 Eq El Eq
Equalizing
1 R2 0 0 R
€ +&3 ; ; 1 1 - ° o2 L2
- a0 O Lay
4-pey ey 18y 2y 8 o
2 @ 1 1 0 L —i 0
] SR i ] a 2
El E:: 252 2E1 GH EUH
1 1 El +c2 2
. 2€, 28 4Pe : 0 - S S 0
2 1 4PEpE Toy: of  dog
! - . a 0 —3+—3 R 1
2'51 252 El Ez _— 0 0 —2
Loy oy

We obtain 3 independent equations
= 1 1

J

|

|

L, R

| LTE 2 4peyeg
|

|

|

Y
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Finally, the solution is:

ﬁo :Bo :Bo

ﬁ: 6‘1: ) 82:

292 2 2
\/l+4092’80 \/l+ 62 -+ o \/1+ 02 - - o
o) 4o, by 20,0 40, By 20,0

where we accounted that B, =1/ R the is matched beta-function of the solenoid.
Note that this solution is not matched to the solenoid. This solution corresponds to the beam
emission from the thermal cathode
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Now we consider the solution matched to the solenoid (the case of ion
source). Here we account that f=1/R

€l T &3 1 1 1 1
40 . ’ 28, 2 3 . . 2,
AREgE ‘E ‘E & E
Tk L R ! 2171 0 0 o ! !
3 3 1 1 3 3 1
1 1
0 1 -— 0 H DR ot : 0 1 -— 0 i owise mee Al
_ 2.3 g1 2 €3 1 23 1 2
.:.E— 2 i -
= ET T £ Fg
ﬁ 10 1 Zeq ey 4PepEg i 00 1 1 PEy
| L] B B ! Iy i By B
Tm.  AE 4 i = Fas g g g
EEI EEE gy Eq 1 1 2

The particle distribution is
2 B~y
wmgenal Sl REFHY e o PV e Uy TV
f-CE:{P[E[ij_EI +(EI+EEJJ(&K+9F)+2—EI ﬂ

Corresponding matrix of the second order moments is

[(3|g; +84 0 0 &+
E5
0 = EE 0
3 i 3
3= EEI =
1] EE iirlE1+E2| 1]
5
2
-z 1] 1] —
| 2 3

Rehearsal of lectures 1-6, V. Lebedev Page | 20



_3|c1+EEI a
0 5
| 3
=':'E - i
I:I EE
_EE 0
That yields
! 2
‘2p ey =L —ay’p
i —!'IE1+E2| EI-T:!'_GH |
= | :
252 g el
i -_'}. i PR
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