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Uncoupled Motion 
 Linearized equation of motion 

 2 0xx K k x             where:  ( ) ( ) /x x yK s K eB s Pc  ,   ( ) ( ) /k s k eG s Pc   
 Solution in matrix form 

11 12

21 22

( ) ( )( ) (0)

( ) ( )( ) (0)

M s M sx s x

M s M ss 
    

     
      or  ( ) ( ) (0)s sx M x  

 Conservation of the Phase Space Volume – Liouville theorem  
 The phase space volume is conserved in the course of motion =>  

 The conservation of the phase space volume is also justified for multidimensional 
motion. It is called Liouville theorem  

 Eigen vectors: , 1, 2k k k k Mv v  
 For arbitrary stable turn-by-turn motion: *

12 2
*

1 ,  v v vv vv    
 Then, at a given place, the position at n-th turn: 

       * * *
1 2 1 2R ee R ,n n

n
nA A C A AC     vx v v  

 The betatron tune: 
2i iQe e      

1M
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X-Y Coupled Motion 
 Linearized equations of motion 
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where:  , , ,( ) ( ) /x y x y y xK s K eB s Pc  , ( ) ( ) /k s k eG s Pc  , PceGN s / , PceBR s /  
 Canonical variables   
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Matrix Form of Equations for X-Y Coupled Motion 

                                     where  

 

Then the motion equations are 

xUH
x

ˆ
ˆ


ds

d
 

 Similar to 1D-motion we introduce 4-dimensional 
transfer matrix for the 2-dimensional motion:  

0ˆ),0(ˆˆ xMx s , 
The cap denotes that the canonical variables (momenta) are used  

 Motion Symplecticity  
ˆ ˆT M UM U  or alternative form ˆ ˆ T MUM U  

 Thus, out of 16 matrix elements of matrix M the motion symplecticity leaves 
only 10 elements being linearly independent    

xHx ˆˆ
2

1 TH 
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0 2
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0 1 2 0

2 0
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2 0 0 1
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0 0 1 0
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Symplecticity of Eigen-Vectors  
ˆ ˆ ˆ , 1,..,4k k k k Mv v  

 For stable motion the eigen-vectors always appear in two reciprocal pairs, 
and, consequently, the four eigen-values split into two complex conjugate 
pairs: 1,1

* and 2,2
* (since real M) 

For 12 (non-degenerate case) we obtain the orthogonality condition 
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,   if0ˆˆ
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Out of 2 complex conjugated vectors we choose one which satisfies the 
normalization condition. Normalization of CC vector has different sign.  
 Stable betatron motion requires 1k   => 

* *
3 1 4 2,      

 Then the motion is described  

         1 2
1 1 1 2 2 2 1 1 1 2 2 2Re Re 2 2i in n n n

n A A e I e I       x v v v v  

 Introduce betatron frequencies so that 
1,2 1,22

1,2
i iQe e      

Normalizing 
eigen-vectors 
we obtain: 
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The Eigen-vector Parameterization  
 For uncoupled motion the 

normalized eigen-vectors are  
 

 we define that 1Im(v ( )) 0s    

2 1

0 12 ,

1 00 and 0 ,T

i



    
     

v Sv
S

v Sv v Sv  

 For coupled motion the normalized 
eigen-vectors are in extended Mais-
Ripken parameterization is              

 The betatron motion is described by 
10 linearly independent functions:  
4 -functions, 4 -functions, and 2 
betatron phase advances 

 Symplecticity yields u, 1 & 2 from known ’s & ’s. 
 However, there are 4 solutions & additional info is required to choose ’s & ’s.  

In practice, for a ring we, first, find the eigen-vectors from known transfer 
matrix, and, then unique solutions for all 4D-Twiss functions  
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Courant-Snider Invariant  
 In uncoupled motion  

 Betatron amplitude  
 Maximum angle  
 Local angular spread  

 Courant-Snyder invariant for uncoupled motion                         
2

2 2 21
2 2I x x

  


 
   v Sx  

 In coupled motion 
2

1,2 1,22I  v Sx  
 

 Beam boundary in 4D phase space 
ˆ ˆ ˆ ˆ ˆˆ ˆ 1 ,T T T x Ξx Ξ UVΞ V U   

where:     



  2211 ˆ,ˆ,ˆ,ˆˆ vvvvV   

 
1 and 2 are invariants of motion 
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1D and 2D Emittances 
 We define the beam emittance as a product of the ellipsoid semi-

axes (omitting the factor 2/2 correcting for the real 4D volume of 
the ellipsoid): 
 

 
 Consequently:  

 

 Gaussian distribution: 
 

 Second order moments 
4
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Perturbed Betatron Motion (Uncoupled Case)  
 In transfer line  

  
0

0 0 0

1 , ,( ) 1
1 sin 2 , ,( ) F

  
     

        

 In a ring 
 0

0

( )
1 cos 2

( ) sin

    
  
 

    
1

2
     

The stopband width  
b     

 Oscillations are 
happening at double 
betatron frequency 
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Perturbation Theory for Symplectic Motion 
 The symplecticity enables to build an effective perturbation theory  

ˆ ˆT M UM U  => ˆ ˆT TM U M U  
 For the perturbed   

motion one can write: 
 M – symplectic  
 transfer matrix,  I ΔM M ,  is not required to be symplectic  

 Account relationship between eigenvalue corrections and the tune 
shifts  

 / (4 ) /n n nQ i       
 We obtain corrections for betatron tunes 

1 1 1

2 2 2

1

4
1

4

Q

Q









   

  


v U ΔM v

v U ΔM v  

  

   j j j j    I ΔM Mv v 
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Problems for Lectures 1&2 
1. For uncoupled betatron motion prove that the normalization of eigen-vectors, ˆ ˆ 2k k i  v Sv , 

yields that  / 1/d ds   and (1/ 2) /d ds    (For the proof use top Eq. of page 7) 

From page 6:  
( ( )) ( ( )) *

1 1( ( ))
*

2 2

( )
v

( ) 2 Re 2 , ( ) ,( )
v2

( )

i s i s
i s

s
e e

s I e I s i s

s

   
 





  


 
                        

v vv v
x v v v

v v  

 
   

( ( )) ( ( ))

/ 2 ( )( ) ( )

( ) ( ) ( )2 2
( ) ( ) ( )

i s i s

d ds ss s
d I d I d

e CC e i CCi s i s d i sds ds ds
s s ds s

   

  


  
  

 

                                              

x
 

On other hand in the first order 

( ( ))
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1 1

( )
1 1

( )

i s

s
ds ds

d e CCi s
d d

s

 







  
                          

x x x  

Compare the top rows of matrix equations: ( ( )) ( ( ))( )
( )

2 2( ) 2 ( )
i s i sI i s I d

d e ds CC e id s
s s
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2. Prove that if v is the eigen-vector for matrix M corresponding to the one turn matrix 
starting at s=0 (point 1) then the vector M12 v will be the eigen vector of the transfer matrix 
corresponding to the point 2. Here M12 is the transfer matrix from point 1 to point 2.  

     
2 1

1 2 1 1 1 2 1 1

, ,

, ,


 

 

 

M M M Mv v

M M M v M v M M M v M v
 

3. Find 2D analog of Courant-Snyder invariant  
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4. Prove that matrix 



  2211 ˆ,ˆ,ˆ,ˆˆ vvvvV  is symplectic  

   * * * *
1 1 1 1 2 2 1 1

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,
2

i i      V v v v v v v v v  

      ** *
1 1 1 1 1 1 1 111

1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0

4 4

TT          V UV v v U v v v Uv v Uv  

      ** *
1 1 1 1 1 1 1 112

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1

4 4

TT i          V UV v v U v v v Uv v Uv  

… 
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5. Fill missed calculations in computation 1 1ˆ ˆ ˆ ˆ ˆT  Σ VΞ V Ξ  

4 4
2

1 2

1 1
ˆ ˆ ˆ ˆ ˆ ˆ( ) exp

4 2
T

ij i j i j i jΣ x x x x f dx x x dx
  

     
  x x Ξx  

Introduce new variable 1ˆˆ ˆy V x  then  

4
2

1 2

1 1
exp

4 2
T T

ij in im n mΣ V V y y dy
  

   
  y V ΞVy  

Account that  VΞVΞ ˆˆˆˆ T  where 
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2

1 2

1 1
exp

4 2
T

ij in im n mΣ V V y y dy
  

   
  y Ξ y  

Matrix 
4

2
1 2

1 1
exp

4 2
T

nm n mK y y dy
  

   
  y Ξ y   is diagonal  

1

1

2

2

0 0 0

0 0 0

0 0 0

0 0 0







 
 
 
 
 
 

K  

 1 1ˆ ˆ ˆ ˆ ˆT  Σ VΞ V Ξ  
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6. Prove that for a symplectic matrix, defined by the following equation ˆ ˆT M UM U , (a) its 

determinant is ˆ 1M , (b) 1ˆ ˆT T M U M U and (c) the matrix also satisfies to ˆ ˆ T MUM U .  

a)   2ˆ ˆ ˆ ˆ ˆ ˆdet det 1 1 1T T       M UM U M M M M  

Only sign + is right since the total matrix is a multiplication of matrices for infinitesimal 

displacement for which ˆ 1n M  

 

b)    1 1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆT T T T          M U M UM UM U M UM M U U UM M U  

 
c)  

   
     1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

T T

T T T

    

     

MU M UM U MUM UM MUU M

UMUM UM M M M U MUI MUM U
 

where we accounted that  UU I  
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7. Assuming that the motion after exit from KRION ion source is uncoupled and described 
uncoupled Twiss-parameters find equations describing the horizontal and vertical rms sizes 
in the downstream beam transport for two below cases.  
(1) Ions exit at the axis of magnetic field. Beam parameters at the ion source center: 
magnetic field - B0, ion rms beam size - , transverse temperature - T.  
(2) Now add that the ions exit solenoid with offset r0 directed at angle  from the 
horizontal plane. 
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(1) First, we find bilinear form describing the distribution inside solenoid 
The distribution function in the magnetic field: 

 
2 22 2 2 2

2 2 0
2 2 2 2

v
( , , , ) exp exp

2 2 2
x y

x y x y

mx y x y
f x y

T 

 
   

  
   

             
 

Then transiting to canonical variables, we obtain for matrix  (x x = 1) 
2

2

2

2

1 0 0 0 1 0 0 01/ 0 0 0

0 1 2 0 0 1 2 00 1/ 0 0

0 0 1 0 0 0 1 00 0 1/ 0

2 0 0 1 2 0 0 10 0 0 1/

T

R R

R R











    
         
    
    
     

Ξ
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We could extract the emittances and Twiss parameters directly from  using the 
following procedure suggested in <Lebedev, Bogacz> 

 
However, we can simplify the solution if we account symmetry of the problem.  
We assume that the distribution is described by the circular modes with unknown beta-
function and, additionally, we will need to find two mode emittances. The eigen vectors 
are: 

1 2

0 0

1 1
0 0

2 2 2 2
ˆ ˆ, ,

0 0

1 1 1 1
0 0

2 2 2 2

i i

i i

   

   

   

   

     
     
     
     
       
     
     
     
          

v v V

 

Then matrix  is:  

1 1 2 2
ˆ ˆ ˆ ˆ ˆ, (1/ ,1/ ,1/ ,1/ )T T diag      Ξ UVΞ V U Ξ  
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Substituting we have  

 
Equalizing  

 
We obtain 3 independent equations 
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Finally, the solution is: 
0 0 0

1 22 2 2 2
0

2 2 2 22
0 0 0 0

, ,
4

1 11
4 2 4 2



   

    
     

       

  

   
 

where we accounted that 0 1/ R   the is matched beta-function of the solenoid. 
Note that this solution is not matched to the solenoid. This solution corresponds to the beam 
emission from the thermal cathode 

 
  



Rehearsal of lectures 1-6, V. Lebedev     Page | 20 

Now we consider the solution matched to the solenoid (the case of ion 
source). Here we account that =1/R 

 
The particle distribution is  

 
Corresponding matrix of the second order moments is 
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That yields 

 
  
 


