Performance study for the anisotropic flow measurements in MPD-FXT

P. Parfenov, M. Mamaev and A. Taranenko (NRNU MEPhI, JINR)

Anisotropic flow & spectators

The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$ho(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^\infty v_n\cos n(arphi-\Psi_{RP}))$$

Anisotropic flow:

$$v_n = \langle \cos \left[n (arphi - \Psi_{RP})
ight]
angle$$

Anisotropic flow is sensitive to:

- Time of the interaction between overlap region and spectators
- Compressibility of the created matter

MPD in Fixed-Target Mode (FXT)

- Model used: UrQMD mean-field
 - Bi+Bi, E_{kin} =1.45 AGeV ($\sqrt{s_{NN}}$ =2.5 GeV)
 - Bi+Bi, E_{kin} =2.92 AGeV ($\sqrt{s_{NN}}$ =3.0 GeV)
 - Bi+Bi, E_{kin} =4.65 AGeV ($\sqrt{s_{NN}}$ =3.5 GeV)
- Point-like target
- GEANT4 transport
- Particle species selection via true-PDG code of the associated mc track

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n = e^{in\phi}$$

where ϕ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_{n}^{\ \text{EP}}$ is the event plane angle

Modules of FHCal divided into 3 groups

Additional subevents from tracks not pointing at FHCal: Tp: p; -1.0<y<-0.6; Tπ: π-; -1.5<y<-0.2;

Flow methods for v_n calculation

Tested in HADES:

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Previous results: main issue

Discrepancy between "reco" and "sim":

- Efficiency?
- Track quality?

Let's look at the track quality...

It seems the pt-resolution drops in the forward rapidity region (y_{CM} >0.5)

Cut N_{hits} >27 seems to improve the situation

Cut DCA<1 cm slightly improve the situation

Track cuts based on p_{τ} -resolution check

Protons:

- Nhits>27
- DCA<1 cm

Now let's look at the efficiency plots with the new cuts

$v_1(y)$ of protons

Efficiency corrections have no significant influence

 $v_2(y)$ of protons

Efficiency introduces no significant difference

$v_2(y)$ of protons: acceptance vs. resolution

Difference is mostly due to acceptance.

Effects related to the (p_T, y, ϕ) -resolution are small.

$v_2(y)$ of protons: effect of autocorrelation?

One additional source of the discrepancy might be due to autocorrelation caused by tracks that fall into FHCal: they are both in u- and Q-vectors

Comparison with "reco" results w.r.t. RP suggests that might happen

Comparison with BM@N performance

BM@N TOF system (TOF-400 and TOF-700) has poor midrapidity coverage at $\sqrt{s_{NN}}$ = 2.5 GeV

- One needs to check higher energies ($\sqrt{s_{NN}} = 3$, 3.5 GeV)
- More statistics are required due to the effects of magnetic field in BM@N:
 - Only "yy" component of <uQ> and <QQ> correlation can be used

Despite the challenges, both MPD-FXT and BM@N can be used in v_n measurements:

- To widen rapidity coverage
- To perform a cross-check in the future

Summary

- Optimal cuts for tracks were provided:
 - Protons
 - Nhits>27
 - DCA<1 cm</p>
- Good agreement between "reco" and "mc" within corresponding acceptance window
- Discrepancy between "reco" and "mc" at forward rapidity:
 - Comparison with associated mc track shows that non-zero (p_T, y, ϕ) -resolution has small effect on resulted v_n difference is due to acceptance
 - Possible contribution to the discrepancy from the tracks that fall into FHCal in progress
- Comparison with BM@N for Bi+Bi at $\sqrt{s_{NN}} = 2.5$ GeV:
 - BM@N TOF acceptance has poor midrapidity coverage at $\sqrt{s_{NN}}$ = 2.5 GeV
 - Both MPD-FXT and BM@N can be useful for the future flow studies at Nuclotron-NICA

Discrepancy is probably due to non-flow correlations

Describing the high-density matter using the mean field Flow measurements constrain the mean field

Selecting the model

The BM@N experiment (GEANT4 simulation for RUN8)

Square-like tracking system within the magnetic field deflecting particles along X-axis

Charge splitting on the surface of the FHCal is observed due to magnetic field