Кластерные квантово-химические ab initio вычисления для моделей квантового магнетизма <u>Л.А. Сюракшина¹, В.Ю. Юшанхай²</u>

¹Лаборатория информационных технологий им. М.Г. Мещерякова, ²Лаборатория теоретической физики им. Н.Н. Боголюбова

- 1. Механизм сверхобмена в сложных магнитных материалах
- 2. Природа магнитного состояния в оксидах/ галогенидах тяжелых переходных металлов
- 3. Основные этапы квантово-химических расчетов:
 - а) выбор решеточного кластерного фрагмента и моделирование его кристаллического окружения
 - b) переход от ХФ к пост-ХФ расчетам N-электронных волновых функций
- 4. От электронного гамильтониана к эффективной спиновой модели посредством квантово-химических кластерных расчетов
- 5. Схема отображения электронной модели на спиновую
- 6. Заключение.

1. Механизм сверхобмена в сложных магнитных материалах – оксидах и галогенидах переходных металлов

Для сложных химических составов оксидов переходных металлов (ОПМ) обобщение представлено механизмом сверхобмена Андерсона.

2. Природа магнитного состояния в оксидах/ галогенидах

тяжелых переходных металлов

Физические свойства соединений переходных металлов обусловлены электронами на частично заполненных 3d-, 4d-, 5d-оболочках

		1											í (
	ττ	-	21	22	23	24	25	26	27	28	29	30	
1	U		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	
			44.9559	47.867	50.9415	51.9961	54.938	55.845	58.9332	58.6934	63.546	65.4089	
			Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	
			39	40	41	42	43	44	45	46	47	48	2
			Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	2
			88.9058	91.224	92.9064	85.94	98	101.07	102.9055	106.42	107.8682	112.411	4
			Yitrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Dhadium	Palladium	Silver	Cadmium	
			71	72	73	74	75	76	77	78	79	80	2
			Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	٤
	λ^{ullet}		174.967	178.49	180.9497	183.84	186.207	190.23	192.217	195.084	196.9666	200.59	2
			Lutetium	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	

Одноузельное Кулоновское отталкивание для d-оболочки : ;

$$H_U = U \sum_{i,\alpha} n_{i\alpha\uparrow} n_{i\alpha\downarrow}$$

Одноузельное спин-орбитальное взаимодействие (СОВ) для d-оболочки :

$$H_{\rm SO} = \lambda \sum_{i} \vec{l}_i \vec{s}_i$$

Расщепление уровней иона $Ir^{4+}(5d^5)$ в октаэдрическом окружении лигандов O^{2-}

Структура решетки для оксидов иридия с Ir⁴⁺(5d⁵)

3. Основные этапы квантово-химических расчетов:

- I. Выбор решеточного кластера и базиса атомных орбиталей.
- II. Построение окружения кластера, моделирующего кристаллическое поле на его ионах.
- III. Самосогласованный расчет одноэлектронных молекулярных орбиталей (МО) в виде ЛКАО в приближении Хартри-Фока (ХФ)
- IV. Построение базиса N-электронных состояний (определителей Слейтера) в терминах одноэлектронных MO.

V. На основе N-электронного базиса из (IV), проведение расчетов конфигурационного взаимодействия (MRCI), для нахождения собственных состояний электронного гамильтониана кластера и его энергетического спектра.

VI.Анализ электронного спектра кластера

3.a) выбор решеточного кластерного фрагмента и моделирование его кристаллического окружения

I. Полностью ионная модель кристаллического окружения.

Точечные заряды, равные ионным, в позициях решетки образуют ближайшее окружение с заданным радиусом, величины удаленных зарядов оптимизируются. [*M. Klintenberg, et. al., Comp. Phys. Comm. 131, 120 (2000)*]

II. Квантово-механическая модель кристаллического окружения. Моделируется эффективный одноэлектронный потенциал как результат предварительного расчета ХФ для периодической решетки. [U. Birkenheuer, et. al., Theor. Chem. Acc. 116, 398 (2006)]

b) переход от ХФ к пост-ХФ расчетам волновой функции N-электрона

Самосогласованное решение для независимых электронов в приближении Хартри-Фока

N-электронные конфигурации принимаются в качестве определителей Слейтера:

$$\begin{cases} F\phi_i(x) = \varepsilon_i\phi_i(x) \\ \left\{ -\frac{1}{2}\nabla^2 - V_{\text{nucl}} + \sum_{i\neq j}\int dx' \frac{\left|\phi_j(x')\right|^2}{\left|\vec{r} - \vec{r}'\right|} \\ -\sum_{i\neq j}\int dx' \frac{\phi_j^*(x')\phi_i(x')}{\left|\vec{r} - \vec{r}'\right|}^2 \phi_j(x) = \varepsilon_i\phi_i(x) \end{cases}$$

Полное конфигурационное взаимодействие (FCI) *N*-электронного состояния:

$$\Psi_A = \sum_K C_{AK} \Psi_K$$

$$\Psi(x_1 \dots x_N) = \\ = \left| \phi_a(x_1) \phi_b(x_2) \dots \phi_n(x_N) \right|$$

<u>Complete active space</u> SCF метод (CASSCF)

CASSCF представляет собой особый тип метода MCSCF, в котором количество определителей, используемых при разложении вектора CI, определяется размером активного подпространства.

Все возможные конфигурации

Схематическое изображение трех орбитальных подпространств CASSCF.

<u>Multireference CI</u> (MRCI) метод

В случае, если конфигурации ХФ является (квази)вырожденными, «reference» состояние необходимо расширить:

Конфигурации с двукратным возбуждением

4. От электронного гамильтониана к эффективной спиновой модели $H_{\rm S}$

достигается использованием ab initio методов квантовой химии для полноэлектронного гамильтониана.

Вычисленная низкоэнергетическая часть спектра ПОЛНОГО (собственные значения и волновые функции) затем отображается на эффективную спиновую модель H_{s} .

5. Схема отображения электронной модели на спиновую

Суперобмен между псевдоспинами

$$\mathcal{H}_{ij} = J_{ij}\tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + \mathbf{D}_{ij} \cdot \tilde{\mathbf{S}}_i \times \tilde{\mathbf{S}}_j + \tilde{\mathbf{S}}_i \cdot \mathbf{\Gamma}_{ij} \cdot \tilde{\mathbf{S}}_j$$

 $Na_2 Ir O_3$; $Li_2 Ir O_3$

Гейзенберг + обменная анизотропия Гейзенберг + большое ДМ взаимодействие + слабая обменная анизотропия

$$H_{ij}^{(\gamma)} = -JS_i^{\gamma}S_j^{\gamma}$$

(γ-ось ⊥ плоскости рисунка)
Изинговская анизотропия, доминирующая над изотропным обменом

Результаты кластерных $[Ir_2O_{11}]$ КХ расчетов для Ba_2IrO_4 :

Симметрия точечной группы D_{2h}. На рисунке указаны элементы симметрии.

$$\mathcal{H}_{\langle ij\rangle \parallel x} = \bar{J}\tilde{\mathbf{S}}_{i} \cdot \tilde{\mathbf{S}}_{j} + \bar{\Gamma}_{\parallel}\tilde{S}_{i}^{x}\tilde{S}_{j}^{x}$$
$$\mathcal{H}_{\langle ij\rangle \parallel y} = \bar{J}\tilde{\mathbf{S}}_{i} \cdot \tilde{\mathbf{S}}_{j} + \bar{\Gamma}_{\parallel}\tilde{S}_{i}^{y}\tilde{S}_{j}^{y}$$

$$E_{S} = -\frac{3}{4}J, \qquad E_{1} = \frac{1}{4}J + \frac{1}{2}\Gamma_{\parallel}$$
$$E_{2} = \frac{1}{4}J, \qquad E_{3} = \frac{1}{4}J - \frac{1}{2}\Gamma_{\parallel}$$

States/Method	HF+SOC	CASSCF+SOC	MRCI+SOC
$\Psi_{\rm S}(A_{1g}) = (\uparrow \downarrow - \downarrow \uparrow)/\sqrt{2}$	12.2	0.0	0.0
$\Psi_3(A_{1u}) = (\uparrow\uparrow - \downarrow\downarrow)/\sqrt{2}$	0.0	37.5	65.0
$\Psi_1(B_{2u}) = (\uparrow \downarrow + \downarrow \uparrow)/\sqrt{2}$	0.2	38.2	66.7
$\Psi_2(B_{1u}) = (\uparrow\uparrow + \downarrow\downarrow)/\sqrt{2}$	0.2	38.2	66.7
$(\bar{J}, \bar{\Gamma}_{\parallel})$	(-12.0,0.4)	(37.5,1.4)	(65.0,3.4)

$$\overline{J} = 65 \text{meV};$$

 $\overline{\Gamma}_{\parallel} = 3.4 \text{meV}$

Заключение

- С целью количественного описания магнитных сверхобменных взаимодействий в сложных соединениях переходных металлов
- развит кластерный квантово-химический подход к вычислению волновых функций и низкоэнергетической части спектра многоэлектронных состояний в решеточных фрагментах;
- применен метод конфигурационных взаимодействий для количественного учета влияния сильных электронных корреляций на значения параметров сверхобмена
- ключены релятивистские поправки в расчеты для тяжелых переходных металлов 5-го периода, что обеспечило спин-орбитальные поправки в значениях параметров сверхобмена

Метод применен к вычислению параметров изотропного и анизотропного сверхобмена в оксидах иридия Ba₂IrO₄, Na₂IrO₃ и др.