Study of π0 reconstruction efficiency for the polarimetry measurement

Andrei Maltsev

SPD Physics & MC Meeting

21.02.2024

Katherin's study: $\pi 0$ reconstruction vs x_F

2

Realistic reconstruction: test sample

Questions for this study:

- what π^0 reconstruction efficiency do we expect for high x_F ?
- are the π^0 reconstructed as a single or two clusters?
- how large is the effect of the beam hole?

Ideal case: only π^0 in event

Realistic reconstruction: $\pi 0$ detection efficiency

Reconstructed π^0 (1 cluster)

- Separation algorithm not trained for barrel-endcap gap
- 70-80% efficiency expected, but after x_F > 0.4 π⁰ is mainly reconstructed as one single cluster
- In the ideal case, clusters are labelled as π^0

Realistic reconstruction: $\pi 0$ detection efficiency

Rarely (for high energies), π^0 is reconstructed as two photons: however, usually, it's one big merged π^0 cluster and a small one ~10 cm away

Reconstructed π^0 (2 clusters)

Understanding the beam hole impact

Reconstructed π^0 with 1 cluster

Hole with effective size ~ 20 cm (leakage leakage for events with radius of photon hit @ endcap $R_v < 20$ cm)

very few events with R < 20 cm expected (~1%)

Outlook and conclusions: other possible issues

- In an ideal case with no other particles, even for high $x_F \pi^0$, 70-80% efficiency is expected.
- For x_F > 0.4, most π⁰ are reconstructed as single cluster: a simple version of gamma/pion separation is already installed in SPDROOT (SpdEcalRCParticle::GetPID());
- However, in minimum bias sample, there could be overlaps between "unrelated" particles: to be studied;
- Another issue: special case of gamma/pion separation in barrel/endcap gap: present approach (summing up energies) is not enough.