On dE/dx simulation in straw

Ruslan Akhunzyanov LHEP JINR

SPD Physics \& MC Meeting Feb 21, 2024

Introduction

- Currently MC value of dx (track segment length) is used in $\mathrm{dE} / \mathrm{dx}$ calculations.
- In this report I show how results will change if instead dx is calculated from track fit information.
- To this end storing of intermediate states of the track should be enabled in the reco script (by default only the first and the last states of the track are saved).

RecoEventFull.cc

```
SpdTrackFitterGF* track_fitter = track_finder->Fitter();
```

```
track_fitter->StoreImPoints(true); // default: false
track_fitter->StoreImMomentum(true); // default: true
track_fitter->StoreImPosition(true); // default: false
//track_fitter->StoreImCovariance(true); // default: false
```

- This possibility was introduced in December 2021.
- However, jobs sometimes crashed due to uncatched genfit exception.
- Bugfix was commited recently to development branch of SpdRoot.

RecoEventFull.cc

SpdTrackFitterGF* track_fitter = track_finder \rightarrow Fitter ();

```
track_fitter->StoreImPoints(true); // default: false
track_fitter->StoreImMomentum(true); // default: true
track_fitter->StoreImPosition(true); // default: false
//track_fitter->StoreImCovariance(true); // default: false
```

- The average size of the produced file reco_full.root is increased by $\approx 7 \%$
(for file with 1000 events from 507 MB to 540 MB).

NStates vs NPoints

NStates vs NPoints (convergency=1)

Further I select only tracks with convergency $=1$ and $\chi^{2} / n d f<4$.

Calculation of dx

$$
\begin{aligned}
& \Delta x=\frac{2 \sqrt{R^{2}-d_{C A}^{2}}}{\sin \alpha} \\
& R=(0.5-0.0036) \mathrm{cm} \\
& \alpha \quad \begin{array}{l}
\text { - the angle between track } \\
\text { direction and tube axis }
\end{array}
\end{aligned}
$$

$\mathrm{dx}_{\text {reco }}$ vs dx

Profile (width/2 = std.dev.)

Truncated mean $\mathrm{dE} / \mathrm{dx}$ distribution

Trunc. mean $\mathrm{dE} / \mathrm{dx}[\mathrm{MC}][$ NhitsB=62 ± 3, NhitsEC=0]

Trunc. mean dE/dx[reCO][NhitsB=62 3 , NhitsEC=0]

σ / μ of truncated mean dE/dx distribution

Increase factor:

K

K

p

Conclusions

- Reconstructed values of dx can be used in SpdRoot now.
- Error of individual values of $d x$ can be very large for small $d x$.
- However the impact on resolution in truncated mean $\mathrm{dE} / \mathrm{dx}$ of the track is small - increase is about 1.01 times.

