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Abstract

Despite the excellent quality of numerical calculations, 3D FEA analysis based on the magnetic vector potential is
computationally expensive and therefore limited by the available hardware resources for magnetostatic problems with
complicated model geometries, large nonconducting regions, nonlinear materials and increased requirements for
accuracy of calculations. To improve the computational efficiency of finite-element modeling for such problems, we
propose therefore to use instead of vector the total scalar potential either in the combination with vector potential, or
even separately. In the former case, both potentials are defined by Maxwell’s equations for conducting and
nonconducting regions of the problem domain and coupled together on their common interfacing boundaries. Thin cuts
with the potential jumps are constructed in the current-free regions to make them simply connected and ensure the
consistency of the vector-scalar formulation. In the latter case, the scalar potential is only defined for nonconducting
regions, while the impact of inductors on the entire problem domain is modeled either with the help of the potential
jumps across thin cuts, or by using the magnetization of linear and nonlinear permanent magnets. The comparative
analysis of the numerical efficiency of proposed methods is carried out by using the model of the dipole magnet as an
example. Most efficiently, these methods can be applied for modeling of the magnetic systems, where a significant
number of simulations with significant variation in geometric shapes is required during development of the optimal
system design.
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Modeling requirements

» B cyclic azimuthally on IER
» B growing radially on IER

precision 1 Gauss (10~ Tesla)
for field on median plane

many runs with many geometry
changes are needed for developing
the optimal system design

L s

SC dipole magnet

|

Ny

o

'y

LIT, March 2024

0.5

Injection & Extraction
Region (IER)



How it works

B bends the path F=q(E+vxB) »Acceleration: fpr = h:2nw

> sochronism: mass increase is
compensated by increase of B with
radius

» Edge (Thomas) and spiral focusing

» Operation away from betatronic
resonances

of charged particle

E accelerates the
charge at each
gap crossing

HY W = |radians/s]
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Basic equations of computational magnetostatics

Ampere’s law (V- j = 0):

VXH=j, in Q, (1)
Gauss’s law:

V-B=0, in (, (2)
Material Law:

B =u(H)H, in Q, (3)

u(H) specified for each material, highly nonlinear for ferrites, discontinues across interfaces of different
materials.

Boundary/Interface/symmetry conditions:
nxH=0, only, (4)
n-B=0. on I}, (5)
with T = 4Q = T, UL},

The first order div-curl system (1)-(3) consists of four scalar equations in three unknowns.
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Magnetic vector potential: B=VXA
Ampere’s law:
vx(/yvxa)=j+ vy inQ (6)

where the Lagrange multiplier i uses to clean the divergence of j and to impose Coulomb gauge:

V-4=0, in (7)

Boundary conditions:
nxVxA=0, on Ty, (8)
nxA=0, on [}, 9)

MVP formulation is a standard tool providing excellent quality of calculation. However, using the potential
A for the whole problem domain (1 is computationally demanding because of high memory consumption
(direct solvers) and long processing time (iterative solvers).
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PN Combining vector and scalar potentials

Figure 1: Typical computational domain of
the magnetostatic problem.

Total scalar potential (j = 0): H= —-VV,
Magnetic Gauss’s law:
V-wv,) =0, in (), (10)
Boundary condition:
Vmn =0, on Iy, (11)
n-Vi, =0, on I}. (12)
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Q=QquA

N~

$HAl=1+0

Figure 2:Typical non-conducting multiply connected region (2,

The potential discontinuity is given by Ampere’s law:
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Figure 3: Thin cut plane with the potential discontinuity.
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Position and form of the cut surface and potentials coupling:

—

Figure 5: The form of the cut surface
defines the directions of the potential jump.

Figure 4: All positions of the cut plane fully

preventing any closed loop from linking the
current are equally good.

Both potentials should be coupled on their common interfacing boundary Ii:

(1/u,) nx(VxA) =—-—nxV-V,, onTj, (14)
— U, n-V-V, =n-(VxA), on T, (15)
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FEM method: converting into weak integral form

MVP formulation for entire domain Q (j # 0):
f(1/,,[V><A)-(wa)dv=fj-wdv+j(le)-wdv, (16)
Q Q Q

f A-(V)dv =0, (17)
Q

with{ =0and nxw = 0,0nT).

MSP formulation with/without single cut for entire domain Q (j = 0):

f (uvi,) - (VOdv —j uin- (Vi —vi7)ds =0, (18)
Q r

cut

with { = 0 on I},
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FEM method: converting into weak integral form

MVP&MSP formulation for Q = Q. U (},;:

f (1/Hc V X A) (Vxw)dv — Li(n X V) -wds = L jrwdv + fQC(VUJ) wdv, (19)

c Cc

n-(VxA)Jds — ] Updn - (VV,F =Vl )ds =0, (20)

Cout

(Un VVi) - (VO dv + f

Qn L

j A-(V&)dv =0, (21)
Q)

c
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FEM method: meshing and approximating
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Figure 6: The finite-element mesh for 1/8-th part of the geometry of dipole magnet.

k n
A'zz' a; - w; szz' v+ {; (22)
i=1 =1
'\ DOFs /
w; - edge shape functions {; - nodal shape functions
k - number of edges n - number of nodes
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FEM method: discretizing with Galerkin method

A Cy(@ f
[—CT B] (v) - (0) (23)
with
Aij = fﬂc (1/ﬂc V X Wi) ' (V X w})dv (24)
By= | Ve (vg)dv+ [ pam- v(aG)Gds (25)
Qn Fcut
A =3t — 4
Cij = (V(l X n) . Wde (26)
T
fi=| j-wijdv+ | (VY)- -w;dv (27)
Qe Qe
K-a=0 (28)
with
Q

c
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FEM method: assembling and solving

Fully coupled approach

Newton’s type methods for nonlinear solver
Direct multifrontal Pardiso solver
Lower-upper triangular decomposition

YV VY

A-x=b A=L-U
— x=U"1'y

y=L"1-p

Solution:

Chervyakov A., On the use of mixed potential formulation for finite-element analysis of large-scale
magnetization problems with large memory demand//arXiv:2307.12308v1[physics. comp-ph] 2023;
Chervyakov A.M., On finite-element modeling of large-scale magnetization problems with combined
magnetic vector and scalar potentials//preprint JINR E11-2023-37, 2023.
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FEM solver available:

Degrees of freedom (DOF) N versus Computational Resources

SLAE A-x=0b

" Directsolvers | 20 | 3
O(N log V) ON*) O(N log )

O(N3/2) O(N?) O(NlogN)

Intel® PARDISO (fastest), MUMPS, Dense Matrix Solver, GMRES, FGMRES, BICGSTAB, TFQMR, Conjugated Gradients
SPOOLES (slowest) Iterations xj = F(xg, ) Xj—1)

LU decomposition A=LU, LWU-x)=L-y=b End up e(xj) <TOL

Direct substitution y=L"1-b Pros: economy

Inverse substitution x=U"1.y Cons: stability, sensitivity to initial approximation
Pros: stability, accuracy p—

Cons: expenses | oomitens; oz 7

Newton method  L(U) =0, Uiy1 = Uj + 1A0, 0<1i1<1 AT et

Stiffness matrix K =-L'(U)), KAU = L(Uj), Uy — initial guess — j\
Solution/Residual  err < k - tol, tol~1073 (< 2.22%1071%) e - -

Based No N\ vt -uil<e e
-,__\\-\\- ) // 0

N

'\/Dou(-
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FEM method: solution

Jump of the potential and continuity of the field across thin cut:

Magnetic scalar potential (A)

x10°

100

Figure 7: The potential jump and the field continuity across thin cut.
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FEM method: solution

Current and field inside the coil:

Multislice: Current density norm (A/m?) Arrow Volume: Current density 9 Multislice: Magnetic flux density norm (T)
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Figure 8: The current and field distributions inside the coil.
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FEM method: solution

The field distributions outside conductor:

Magnetic flux density norm (T) o Magnetic flux density norm (T) o
m T T
T
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Figure 9: Distributions of the magnetic flux density norm over the median plane (left) and along the azimuthal direction (right).

Solid and points refer to calculations with MVP&MSP and MVP formulations, respectively.
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FEM method: comparison

Comparison MVP vs MVP&MSP:

Table 1:Summary of formulations used to model dipole magnet.

Element Number of Number of Memory (Gb) Time of Number of
order FEs DOVs Phys/Virtual computation iterations
MVP&MSP 3/3 423 198 2 049 396 38.19/56.59 8m 33s 7
MVP 3 414 840 9 958 301 393.15/443.24 4h 12m 46s 8

The reduction of DOFs by a factor of 4.85

The reduction of RAM by a factor of 10

The reduction of time processing by a factor of 30

For relative error between the two of 0.0003 Tesla, or 3 Gausses.
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Using exclusively the scalar potential:

» By construction, the MMF of coil is represented by the potential jumps across thin cuts to induce the
magnetic fields in the current-free regions;

» Thus, the induction effect of coil on entire problem domain can be modeled by using either thin cuts, or
permanent magnets with potential jumps and (de)magnetization defined by the equivalent MMF of the coil;

reproducing coil impact with thin cuts:

AV, =1
D ndindbrioddorilorioulpac-t: ror GNP = © ~ — " " T TS S
T R e S : —-:'_'_'_'______‘_'_‘_‘_‘:—& I/N
| ccnbRaRiRRRee | ] <. 4
I L RS elnlniniiitlor T
. o T T Figure 11: Equivalent multi-wire coil represented
Z’fgrsnlg%zzgnogen'zed SARETTaLe by cuts for each wire. Both are just virtual
geometrical objects
reproducing coil impact with PMs: u:eﬁ SOIe_:Y for modeling
of the coil impact.
D D
< > He = I/L

LiE‘: I — —_—

Figure 11: Homogenized coil.

Figure 12: Equivalent permanent magnet.

LIT, March 2024 20



A single model geometry with optimized cut plane and PM to substitute the coil impact.
Both entities are crossing the air gaps and the ferromagnetic sectors.

m o o= m

Figure 13: A single model geometry with the cut plane and the PM crossing the air gaps and the ferromagnetic sectors.
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Figure 14: The nonlinear part of the magnetic system after constructing PM.
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Using exclusively the scalar potential: virtual PM

The part crossing the air gaps is modeled as the linear PM with almost constant permeabolity specified
either by the magnetization M = u,.H_, or the remanent flux density B, = uou,H,

B
4 B = B, + pourH

7 B = uo(M + H)

0.2 |

04

0.6 |

Figure 15: The linear part of the virtual PM specified by either the remanent flux density B,., or the magnetization M.
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Using exclusively the scalar potential: virtual PM

The part crossing the ferromagnetic sectors is modeled as the nonlinear PM specified by the nonlinear
demagnetization BH-curve

0 — ; — A
[ e il B = f(H + H,)
02 |- | l,_ = :. = =18 | /
m ik | I . —HC
06 | : ” | \ o

Figure 16: The nonlinear PM specified by the nonlinear demagnetization BH-curve.
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Using exclusively the scalar potential: virtual PM

The nonlinear demagnetization BH-curve of PM is obtained via shifting the original BH-curve by a coercivity
H_ to the left

BT'
B 4 B = f(H) " 4 B =f(H +H,)
- ~
> —_— _HC\A >
H H
J /

Figure 17: The demagnetization curve of nonlinear PM is obtained via shifting the original BH-curve by H, to the left. This curve
corresponds to a nonlinear material with a remanent flux density B, = f(H,) at H = 0..

where the coercivity H,. defined from the equivalent MMF of the coil is the value of external field
necessary to demagnetize PM.
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Using exclusively the scalar potential: FEM modeling

FEM modeling based on three MSP formulations is performed and compared by using a single model
geometry of the magnetic system:
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Figure 18: A single geometry for comparison of FEM modeling based on three formulations using scalar potential.
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Using exclusively the scalar potential: solution

MSP with cut: field distributions compared to reference field
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Figure 19: Distributions of the magnetic flux density norm over the median plane (left) and along the azimuthal direction (right).
Solid refers to the reference field distribution and points to calculation with MSP/cut formulation.
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Using exclusively the scalar potential: solution

MSP/PM and MVP&MSP: fields distributions compared to reference field
Reference solution: iterative A-based AMS-solver, run time 21h 2m 33s
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Figure 20: Distributions of the magnetic flux density norm along the azimuthal direction. Solid refers to the reference field distribution
and points to calculations with MSP/PM (left) and MVP&MSP (right) formulations.
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Using exclusively the scalar potential: comparison

Comparison between three MSP-formulations: MSP/cut vs MSP/PM vs MVP&MSP

Table 2: Summary of MSP-formulations used to model dipole magnet.

Element Number of Number of Memory (Gb) Time of Number of
order FEs DOVs Phys/Virtual computation iterations
MSP (cut) 3 779 409 3635616 46.39/65.99 14m 31s 8
MSP (PM) 3 779 409 3635516 48.04/67.66 14m 13s 8
MVP&MSP 3/3 779 409 3750 232 77.89/99.8 22m 46s 7
MVP 2 779 409 6 160 618 196.72/226 1h 36m 24s 6

Max error: MVP&MSP 0.0022; MSP (cut) 0.0050; MSP(PM) 0.0028.

Chervyakov A., Finite-element modelling of magnetic fields for superconducting magnets with magnetic
vector and total scalar potentials using COMSOL Multiphysics®// Int. J. Engineering Systems Modelling and
Simulation. — v.13, 2022-P.117-133;

Chervyakov, A., Comparison of magnetic vector and total scalar potential formulations for finite-element
modeling of dipole magnet with COMSOL Multiphysics//physics.comp-ph/arXiv:2107.01957, 2021.
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Conclusion:

» The use of magnetic scalar potential allows to substantially reduce the amount of computer memory and
computation time at almost similar accuracy for finite-element modeling of the resource-demanding
magnetization problems;

» Most efficiently, the MSP-formulations can be utilized for modeling of magnetic systems, where a significant
number of simulation runs with significant variation in geometric shapes is required during development of
the optimal system design;

» The A-based formulation together with the iterative AMS solver, as providing the excellent quality of
computation, can still be useful for the final check-up on the optimized system design;
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Thank you for your attention!
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