

Status of analysis of neutron data obtained with compact TOF neutron spectrometer

BM@N run Dec.2023 – Feb.2024 ¹²⁴Xe + Csl, 3.8 A GeV

N. Lashmanov*, V. I. Yurevich, S. A. Sedykh, V. Yu. Rogov, S. V. Sergeev, P. N. Grigoriev, V. V. Tikhomirov, A. A. Timoshenko

Compact TOF Neutron Spectrometer

Neutron Detector

Data Analysis

Stages of analysis:

- ✓ Calculation of neutron detection efficiency
- ✓ Time amplitude correction
- ✓ Amplitude energy calibration
- ✓ Suppression of gamma-ray background with n/γ pulse shape discrimination (PSD method)
- ✓ Estimation of neutron background for measured TOF spectra

Neutron energy spectrum – double-differential neutron production cross section

$$\frac{d^2\sigma}{dEd\Omega} = \frac{\Delta N}{\Delta E \cdot \Delta \Omega \cdot \varepsilon(E) \cdot n \cdot I \cdot k_1 \cdot k_2}$$

 ΔN – the number of events in the energy interval ΔE , $\Delta \Omega$ – the solid angle,

 $\varepsilon(E)$ – the detector efficiency at neutron energy E,

n – the number of target nuclei per 1 cm²,

I – the number of beam ions,

 k_1 – the correction factor for the dead time of the spectrometer

 k_2 – the correction factor for the selection of events with one incident beam ion in a time interval of ± 1.5 µs

Neutron Detector Efficiency

$\varepsilon = (1 - e^{-\Sigma h}) \left[\frac{\Sigma_H}{\Sigma} \left(1 - e^{-\Sigma h} \right) \right]$	$\left(\frac{B_H}{E}\right) + \frac{\Sigma_C}{\Sigma} \left(1\right)$	$-\frac{B_C}{E}\Big]$
---	---	-----------------------

 $\Sigma = \Sigma_C + \Sigma_H = n_C \sigma_{ch}(nC) + n_H \sigma(np)$

 $\sigma_{ch}(nC)$ – cross section of ch. particle production in reactions with carbon nuclei

 $\sigma(np)$ - cross-section of np scattering

h – the thickness of the stilbene crystal

 $\mathbf{B}_{\mathbf{C}}$ – the threshold for reactions with carbon

 \mathbf{B}_{H} – the threshold for recoil protons in np scattering

Pulse shape n/γ - discrimination

Pulse shape n/γ - discrimination (ND4)

Pulse shape n/γ - discrimination

Comparison with available results

Neutron Detectors

Neutron Detector	Stilbene (mm)	Angle (deg.)	Flight path (cm)	E _{th} (MeV)	σ _t (ps) TOF (ND)	FOM at 1 MeV
ND1	D30 × 10	110	22	1	134 (128)	1.98
ND2	D25.4 × 25.4	121	31.9	1	121 (114)	2.17
ND3	D25.4 × 25.4	110	31.2	1	124 (118)	2.28
ND4	D25.4 × 25.4	95	28.6	1	117 (110)	2.47

TOF spectra and Neutron background

TOF spectrum of γ -rays

. 10/12

Energy spectra of neutrons

 124 Xe + CsI, 3.8 A GeV

