

The misalignment of small CSCs in Xenon run

<u>V.Plotnikov</u> VBLHEP, JINR, Dubna, Russia

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER

Analysis and Detector Meeting of the BM@N Experiment at the NICA facility 13.03.2024, Dubna, Russia

Outline

- 1. Run with xenon beam
 - ✓ Small CSCs numbering
- 2. Data analysis
 - \checkmark Bad zones in CSC modules
 - \checkmark Z shift
 - \checkmark X and Y shifts
- 3. Summary

Small CSCs numbering

The four small CSCs are indicated by red arrows. Top module – 0, bottom - 1

Bad zones in CSC0_0

Broken strips, mechanical support, high voltage, noisy strips

Noisy strips, high voltage, efficiency drop

Bad zones in CSC3_0

Noisy strips

6

✓ NHits > 7
✓ NGemHits > 5
✓ | $\Delta_{X(Y)ToF-400Hit-Track}$ | < 6 cm
✓ | $\Delta_{X(Y)CSCHit-Track}$ | < 3 cm (all CSC hits)

7

Z shift

Z, X, Y shifts of CSC1 0

Ζ

V.Plotnikov

9

Results

Mod ule	Broken zone	dz, cm	dx, cm	dy, cm
0_0	$(131 < x < 134 x \approx 154 x \approx 162) \text{ cm & } y > 14 \text{ cm}$	-0.545 ± 0.302 $\Delta_{xx'} \approx 0.7$	0.030±0.005	-0.247±0.009
0_1	(x≈143.5 x≈145) cm & y<-14 cm	-2.563 ± 0.306	-0.294±0.004	0.132±0.007
1_0	-93 <x<-88 cm<="" th=""><th>-0.2074±0.075≈0</th><th>0.1043±0.0018</th><th>-0.1872±0.0033</th></x<-88>	-0.2074±0.075≈0	0.1043±0.0018	-0.1872±0.0033
1_1	-	1.019±0.030	0.089±0.003	0.061±0.006
2_0	-	0±0.4	0.075±0.007	-0.443±0.009
2_1	-	-1.676±0.271	-0.159±0.007	-0.049±0.010
3_0	x≈-147 cm & y>14 cm	-0.08±0.08≈0	0.3359±0.0042	-0.2404±0.0075
3_1	-	1.465±0.081	0.315±0.004	0.007±0.007

Results

CSC Id	0	1	2	3
$\Delta z_{01}^{}$, cm	2.018±0.430	-1.226±0.081	1.7±0.5	-1.545±0.114

- 1. Small CSCs are already well aligned. Worst alignment for CSC0;
- 2. Between the top and bottom modules in each CSC chamber, the Z shift of about 1.5 cm is obtained;
- 3. For all modules except CSC0_1, the displacements dz obtained for X and X' coincided within the limits of uncertainty;
- 4. The maximum dz was obtained for CSC0_1. It was about 3 cm;
- 5. For all modules, the shifts in X and Y do not exceed 3 mm, with the exception of the CSC2_0 and CSC3_0 modules. $dy_{CSC2_0} \approx -0.44$ cm and $dx_{CSC3_0} \approx 0.34$ cm.

Thank you for attention!

Z shift of CSC0_1

Z shift of CSC1_1

Z, X, Y shifts of CSC2_0

Y rotation of CSC1_1

 $dx = \partial dx / \partial Tx$ $dz = (x - x_0) \sin \alpha$ $x = Tx \cdot z_{CSC3}$

 $dx = z_{CSC3} \cdot \sin\alpha (Tx^{3}/3 - Tx_{0}Tx^{2}/2) + [p2]$ 0.1037 rad \approx 5.9 deg

Z, X, Y shifts of CSC3_0

Z shift of CSC3_1

