Detection of neutrons at 0 degrees from the dissociation of Xe @3.8 AGeV nuclei

Sakulin Dmitriy
on behalf of the HGND group

Analysis and Detector Meeting of the BM@N Experiment

The aim of this work is the interaction of ${ }^{124} \mathrm{Xe}{ }^{+54}$ ions with a Csl target with neutron emission at zero degrees in laboratory system.
In the nuclear electromagnetic interaction, the parity and spin of the system are preserved.

Expected reactions:

$$
\begin{aligned}
& { }^{124} \mathrm{Xe}\left(0^{+}\right) \rightarrow{ }^{123} \mathrm{Xe}\left(1 / 2^{+}\right)+\mathbf{n}\left(1 / 2^{+}\right) \\
& { }^{124} \mathrm{Xe}\left(0^{+}\right) \rightarrow{ }^{122} \mathrm{Xe}\left(0^{+}\right)+\mathbf{2 n}\left(0^{+}, 1^{+}\right)
\end{aligned}
$$

There are no experimental data for the presented reactions in the energy range 1-4 AGeV

Shematic picture of the GDR in the Steinwedel and Jensen model.

Nuclei exitation

E2
$\mathrm{Pi} / \mathbf{P f}=(-1)^{-\mathrm{L}+1}$

M1

Spectrum of $\mathbf{9 2 . 5 - M e V}$ electrons scattered at $\mathbf{1 0 5}^{\mathbf{0}}$
I.A. Pshenichnov, U.A. Dmitrieva
"Emission of forward nucleons by 129Xe in UPC at $\sqrt{ }$ SNN $=5.44 \mathrm{TeV}$: Preliminary data vs RELDIS"

Production of			$\text { f }{ }_{54}^{126,127,128} \mathrm{Xe}$	RELDIS: Total single EMD 50.6 b	$\begin{gathered} { }^{129} \mathrm{Xe} \\ (1 / 2+) \end{gathered}$
Residual nucleus from beam C	ZNC	ZNA	$\begin{gathered} \sigma \pm \sigma_{\text {fit_err }} \pm \sigma_{\text {stat_err }} \\ \text { (barns) } \end{gathered}$ normalized to RELDIS	$\sigma_{\text {RELDIS }}$ (barns)	
${ }^{128} \mathrm{Xe}$	1 n	Xn	$22.51 \pm 0.06 \pm 0.06=22.51 \pm 0.08$	21.44 ± 0.05	$(0+)$
${ }^{127} \mathrm{Xe}$	2 n	Xn	$6.04 \pm 0.03 \pm 0.03=6.04 \pm 0.05$	4.65 ± 0.02	(1/2+)
${ }^{126} \mathrm{Xe}$	$3 n$	Xn	$2.64 \pm 0.03 \pm 0.02=2.64 \pm 0.04$	1.2 ± 0.01	$(0+)$

Errors are only from fitting procedure (e.g. due to parameter correlations) and purely statistical ($1 / \sqrt{n_{\text {events }}}$ for each neutron peak), same for RELDIS.

Primary neutrons multiplicity distributions at vacuum wall before nDet

PROTOTYPE

DCM-QGSM-SMM (9999ev)
hMult_neutr_prim_before_ndet

hMult_neutr_prim_before_ndet

RELDIS (10000 ev)

Geometry:
Vacuum in cave Target, Hodo, vacuum Wall
With field
nDet position:
$X=10 \mathrm{~cm}$
$\mathrm{Y}=0.52 \mathrm{~cm}$
$Z=838 \mathrm{~cm}$
$\operatorname{rot} Y=0.7 \mathrm{deg}$

DCM-QGSM-SMM
RELDIS

Schematic view
Position 0 degree

Forward

High
Granularity
Neutron
detector
15 layers

Veto $+5 \mathrm{~Pb}+9 \mathrm{Cu}$
Scintillator cell
$40 \times 40 \times 25 \mathrm{~mm}^{3}$
135 readout channels

Data set conditions

The HGN detector at the 0° position has been adjusted (now the angle corresponds to $\sim 0.7^{\circ}$): back part of the HGNd has been moved by 11 cm , the front by 10 cm towards the beam axis.

HGNd completely overlaps FHCal module No. 49 in this position

№ Run	Events	Target	Type	Comment	
8281	$999 K$	Csl (2\%)	Physics	BT trigger beam position $x=-7 m m y=-14 \mathrm{~mm}$	
8282	121 K	Empty	Calibration	BT trigger beam position	$x=-7 m m y=-14 m m$
8283	$106 K$	Empty	Calibration	BT trigger beam position	$x=-12.4 m m y=-12.2 \mathrm{~mm}$
8284	$400 K$	CsI (2\%)	Physics	BT trigger beam position	$x=-12.4 m m y=-12.2 \mathrm{~mm}$

Trigger statistics

Special runs

Beam time 30 min was allocated

Beam position $x=-7 \mathrm{~mm} y=-14 \mathrm{~mm}$

Target CsI(2\%)
All triggers: 893752
BT trigger: 662453

Target Empty
All triggers: 121177
BT trigger: 113959

Only
BEAM TRIGGER
for analysis

Additionally removed events with the remaining triggers from the analysis

2 data sets due to the deflection of the beam in target

```
Beam position x=-12.4mm y=-12.2mm
```

Target Csl(2\%)

All triggers: 373967
BT trigger: 275616

Target Empty

All triggers: 105959
BT trigger: 99861

Fragments charge distribution in FQH

Charge cut 2500

Simulation Xe beam in HODO with neutron emission

Beam position in hodoscope

Beam position in target	Beam position in hodoscope				Diff target - non target	
	CsI(2\%) Target		EMPTY Target		$\Delta($ mean $)$	Δ (fit)
	MEAN	FIT	MEAN	FIT		
$\mathbf{x}=-7 \mathrm{~mm} \mathbf{y}=-14 \mathrm{~mm}$	8.714	9.208	8.424	8.923	0.290 cm	0.285 cm
$\mathbf{x}=-12.4 \mathrm{~mm} \mathbf{y}=-12.2 \mathrm{~mm}$	8.285	8.777	7.977	8.472	0.308 cm	0.305 cm

The presence of target leads to relative beam deflection of 0.3 cm associated with ionization energy losses in the target at 1.15 GeV

Clusterization in HGNd

 by empty layer and number of cells > 1

Simulation

Box generator Only neutrons 100k events

The efficiency of neutron detector for two neutron events is lower than for single neutron events due to the specific of the selection algorithm

Energy deposition in veto layer

Primary neutrons

Ekin 3.86 GeV 100k events
Edep > 3 MeV

From
 backscattering

Experimental data

Neutron kinetic energy by the fastest cell in the cluster

Experimental data
No correlation between the number of clusters and the beam deflection.

Deflection in each selection is 1 cm

The number of clusters is close to the simulation predictions, and one neutron is emitted

Beam position $x=-7 \mathrm{~mm} y=-14 \mathrm{~mm}$

Beam position $x=-12.4 m m y=-12.2 m m$

Target CsI(2\%)

Target Empty

Beam position in hodoscope

Target CsI(2\%)
Strip position (cm)

0 cluster $8.294 \pm 0.003 \mathrm{~cm}$
1 cluster $8.698 \pm 0.018 \mathrm{~cm}$
2 clusters $8.615 \pm 0.25 \mathrm{~cm}$
Beam position $x=-7 \mathrm{~mm} y=-14 \mathrm{~mm}$

Target
Strip position (cm)

0 cluster $8.728 \pm 0.004 \mathrm{~cm}$ 1 cluster $9.085 \pm 0.027 \mathrm{~cm}$ 2 clusters $8.952 \pm 0.158 \mathrm{~cm}$

The values for the two cluster events are underestimated due to the selection criteria Two clusters events have large errors, so more detailed study is required.

Beam position in hodoscope

Beam position in target		Beam position in hodoscope				Δ (mean)
		CsI(2\%) Target		EMPTY Target		
		MEAN (cm)	EVENTS	MEAN (cm)	EVENTS	
$\begin{gathered} x=-7 \mathrm{~mm} \\ y=-14 \mathrm{~mm} \end{gathered}$	0 cluster	8.296 ± 0.003	63800	7.963	10960	
	1 clusters	8.741 ± 0.018	3820	8.202	410	$0.45 \pm 0.02 \mathrm{~cm}$
	2 clusters	8.618 ± 0.250	39	-	-	$0.32 \pm 0.25 \mathrm{~cm}$
$\begin{aligned} & x=-12.4 \mathrm{~mm} \\ & y=-12.2 \mathrm{~mm} \end{aligned}$	0 cluster	8.727 ± 0.004	27230	8.411	9530	
	1 clusters	9.128 ± 0.027	1610	8.711	380	$0.4 \pm 0.03 \mathrm{~cm}$
	2 clusters	8.92 ± 0.158	21	-	-	$0.19 \pm 0.16 \mathrm{~cm}$

The difference in the beam position between events without cluster allocation and single cluster events is $0.44 \pm 0.02 \mathrm{~cm}$ double clusters events is $0.28 \pm 0.22 \mathrm{~cm}$
The beam deflection is the same in both cases within the error limits

Evaluation of the cross section

Calculations based on

В.С.Барашенков «Сечения взаимодействия частии и ядер с ядрами», Дубна 1993.

$$
\begin{gathered}
\sigma_{\text {tot }}\left(T, A_{b}, A_{t}\right)=\sigma_{0}(T)\left(A_{b}^{1 / 3}+A_{t}^{1 / 3}\right) \\
\sigma_{0}(T)=34.5 T^{0.06}(\mathrm{mb}) \\
T=3.896 * 124=483,1 \mathrm{GeV}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Evaluation of the total cross section }{ }^{124} \mathrm{Xe}+\mathrm{CzI}(2 \%)(3.9 \mathrm{GeV} / n u c) \\
& \sigma_{\text {tot }}\left(T, A_{b}, A_{t}\right)=34.5 * 483.1^{0.06} *\left(124^{1 / 3}+130^{1 / 3}\right)=497.9 \mathrm{mb} \\
& \text { Beam trigger } \\
& \text { with target } 938069 \quad \mathrm{~N}_{\text {tot }}=18651 \\
& \mathrm{c}>=1 \text { cluster } 5490 \quad \sigma_{\text {tot }}(\mathbf{d A}>1) \sim 147 \mathrm{mb} \\
& \text { w/o target } 213820 \\
& \text { c >=1 cluster } 790 \\
& \mathrm{~N}_{\text {tot }}=4251 \\
& \sigma_{\text {tot }}(\mathrm{dA}>1) \sim 92 \mathrm{mb}
\end{aligned}
$$

The cross sections in relation to the total nuclear cross section

No corrections for acceptance or detection efficiency yet ...

Conclusions

Analysis based on the beam deflection in FQH shows that the ${ }^{124} \mathrm{Xe}^{+54}$ disintegration reaction proceeds with the emission of single neutron. The average number of experimental measured clusters is 1.1 and from simulation is 1.06

Analysis based on the number of clusters shows that the ${ }^{124} \mathrm{Xe}^{+54}$ disintegration reaction proceeds with the emission of single neutron. The deflection for one cluster is $0.44 \pm 0.02 \mathrm{~cm}$, and for two clusters is $0.28 \mathbf{~} \mathbf{0 . 2 2} \mathbf{~ c m}$. The beam deflection is the same in both cases within the error limits.

$$
\begin{aligned}
& { }^{124} \mathrm{Xe}\left(0^{+}\right) \rightarrow{ }^{123} \mathrm{Xe}\left(1 / 2^{+}\right)+\mathbf{n}\left(1 / 2^{+}\right) \text {registered } \\
& { }^{124} \mathrm{Xe}\left(0^{+}\right) \rightarrow{ }^{122} \mathrm{Xe}\left(0^{+}\right)+\mathbf{2 n}\left(0^{+}, 1^{+}\right) \text {not detected }
\end{aligned}
$$

The nuclear cross-section estimate with no correction for acceptance and efficiency of the neutron detector is $\sigma(\mathrm{dA}>1) \sim 147 \pm 92 \mathrm{mb}$, where 92 mb is systematic error estimate from empty target. This result very preliminary.

Information about the cross-section can be used for the BM@N trigger system and for the luminosity determination in the NICA collider.

Thanks for your attention

