Analysis and Detector Meeting of the BM@N Experiment

"Lambda hyperons in carbon run"

Speaker: Ksenia Alishina Scientific supervisor: M. Zavertyaev Scientific adviser: Yu. Stepanenko

13.03.2024

JINR, Dubna, Russia

Goal and tasks of the job

Goal of the job:

To measure $\Lambda^0 \rightarrow p + \pi^-$ yields and inverse slopes in pT spectra. The results will be published.

Steps:

- To get the efficiency of signal reconstruction in the MC.
- To plot the mass distribution $\Lambda^0 \rightarrow p + \pi^-$ with efficiency ω_i over the kinematic range ($p_T y$).
- To Define kinematic areas with low reconstruction efficiency ω_i .
- Perform measurement of areas of low efficiency using the GQSM model.
- To estimate the number of extracted signals by the fitting method.
- \circ To obtain the cross sections and yields in C+A (4, 4.5AGeV) reactions.
- To obtain inverse slopes in pT spectra in C+A (4, 4.5AGeV) reactions.

Analysis scheme C+A \rightarrow X (run-6)

Setup scheme (spring 2017)

Kinematic measuring range:

 $0.1 < p_T < 1.05 \; GeV/c$

4 AGeV: $1.2 < y_{lab} < 2.1$, **4.5 AGeV**: $1.25 < y_{lab} < 2.15$

A decay reconstruction in Central tracker(Si+GEM) in C+A interaction C + A \rightarrow X , A : C, Al, Cu, Sn, Pb

Gas Electron Multiplier (GEM) system:

To measure momenta of a charged particle and reconstruct the interaction point

Selection of events with Λ hyperon

Event topology: PV – primary vertex V0 – vertex of hyperon decay dca – distance of the closest approach path – decay length

Criteria for the selection of $\Lambda\text{-hyperons}$:

- ✓ Each track has at least 4 of the 6 hits in (GEM);
- ✓ p_{pos} < 3.9(4.4) GeV/c for a beam energy of 4 (4.5) AGeV;
- \checkmark p_{neg} > 0.3 GeV/c;
- ✓ dca < 1 cm;
- ✓ Distance between the decay vertex V_0 and the primary vertex: path > 2.0 2.5 cm (target dependent).

*K. A. Alishina, Yu. Yu. Stepanenko, A.Y Khukhaeva" Gem residuals corrections in monte-carlo simulation for the run 6 at the BM@N experiment", PEPAN letters – volume 19,part 5, 2022

13.03.2024

Procedure in MC modelling(QGSM)

1. Divide the kinematic measuring range by y, p_T into (8x8) cells in the MC simulation;

h18	h28	h38	h48	h58	h68	h78	h88	ľ
h17	h27	h37	h47	h57	h67	h77	h87	
h16	h26	h36	h46	h56	h66	h76	h86	
h15	h25	h35	h45	h55	h65	h75	h85	
h14	h24	h34	h44	h54	h64	h74	h84	
h13	h23	h33	h34	h53	h63	h73	h83	
h12	h22	h32	h42	h52	h62	h72	h82	
h11	h21	h31	h41	h51	h61	h71	h81	
								_

 $C + A \rightarrow X$, 4. 0(4. 5)AGeV

2. To get the number of events generated by the MC;

Kinematic measuring range:

4.5 AGeV: 1.25 < *y*_{*lab*} < 2.15

4 AGeV: $1.2 < y_{lab} < 2.1$

 $0.1 < p_T < 1.05 \ GeV/c$

3. Fit with function (*) the 8x8 matrix cells of the MC for the reconstructed events with Λ.
 Function for background estimation:

$$f_{bg} = N \cdot (x - M_0)^A \cdot e^{-B \cdot (x - M_0)}$$
 (*)

Where N, A, B are free parameters of the fitting function, $M_0 = 1.078 \ \Gamma \ni B/c^2$, x is the mass value.

4. To get the weight of each cell: $\omega_i = MC_{rec_i}/MC_{gen_i}$, where MC_{rec_i} is the number of extracted MC signal (step 3), MC_{gen_i} is the number of events generated by the MC;

QGSM generated A's for P_T

BM@

Distribution of the reconstructed signal in the MC BM@

13.03.2024

BM@ Reconstruction efficiency Λ 's for $P_T(y)$

13.03.2024

 P_T , GeV/c

Extrapolation procedure from simulated data

BM@N

- Let's highlight the areas where cells have been discarded from consideration (Purple rectangles);
- Sum all the cells in two neighboring columns by the rapidity y;
- Sum the cells in which the efficiency $\omega_i \ge 0.01$;
- To obtain extrapolation factors by the formula : $f_{extr} = \frac{N_{all(a+b)}}{N_{con(a+b)}}$;

 $N_{all(a+b)}$ - sum of all generated events in paired columns(a,b) by y; $N_{con(a+b)}$ - sum of all considered in paired columns (a,b) by y;

• Mass spectra $M_{inv}(\Lambda \rightarrow p\pi^{-})$ is multiplied by the extrapolation factor $f_{extrcon}$;(DATA)

BM@N

Extrapolation factor f_{extr}

One-dimensional mass distribution of the $\Lambda^0 \rightarrow p\pi^-(\text{DATA})$

Procedure in DATA C+A \rightarrow X

- 1) Split (y, p_T) area in small cells for MC/DATA (8x8);
- 2) To each event assigned the weight ω_i ;
- 3) Sum the cells by $\sum_{ij} y_{ij}$ and by $\sum_{ij} pT_{ij}$

Reaction C+C	signal $N_{rec}^{\Lambda}(p_T/\mathbf{y})$
4.0 AGeV	30672
4.5 AGeV	20200

∧ signal width ~ 2.0 - 4 MeV;
Signal = hist - Background(bg) in 1107.5-1125 MeV/c²;
Background → F(M_{pπ}-)_{bg} = p₀ + p₁M_{pπ}- + p₂M_{pπ}-² + p₃M_{pπ}-³ + p₄M_{pπ}-⁴ → 4th polynomial(Blue dashed);
err(stat) = $\sqrt{\sum w_i^2}$;

One-dimensional mass distribution of the $\Lambda^0 \rightarrow p\pi^-(\text{DATA})$

Procedure in DATA C+A \rightarrow X

- 1) Split (y, p_T) area in small cells for MC/DATA (8x8);
- 2) To each event assigned the weight ω_i ;
- 3) Sum the cells by $\sum_{ij} y_{ij}$ and by $\sum_{ij} pT_{ij}$

Reaction C+Cu	signal $N_{rec}^{\Lambda}(p_T/oldsymbol{y})$
4.0 AGeV	76295
4.5 AGeV	113404

∧ signal width ~ 2.0 - 4 MeV;
Signal = hist - Background(bg) in 1107.5-1125 MeV/c²
Background → F(M_{pπ}-)_{bg} = p₀ + p₁M_{pπ}- + p₂M_{pπ}-² + p₃M_{pπ}-³ + p₄M_{pπ}-⁴ → 4th polynomial(Blue dashed);
err(stat) = $\sqrt{\sum w_i^2}$;

Cross sections and yields of the $\Lambda \rightarrow p\pi^{-}$

The inclusive cross section σ_{Λ} and Y_{Λ} of Λ hyperon in C+A interactions are calculated in bins of y (pT) according to the formulae:

$$\sigma_{\Lambda}(y) = \sum y[N_{rec}^{\Lambda}(y, p_T) / \varepsilon_{rec}(y, p_T) \cdot \varepsilon_{trig} \cdot \varepsilon_{pileup} \cdot L]$$
(**)

$$\sigma_{\Lambda}(p_T) = \sum p_T[N_{rec}^{\Lambda}(y, p_T) / \varepsilon_{rec}(y, p_T) \cdot \varepsilon_{trig} \cdot \varepsilon_{pileup} \cdot L]$$
(**

$$Y_{\Lambda}(y) = \sigma_{\Lambda}(y) / \sigma_{inel}$$

$$Y_{\Lambda}(p_T) = \sigma_{\Lambda}(p_T) / \sigma_{inel}$$

$$(***)$$

where L is the luminosity, N_{rec}^{Λ} is the number of recontacted Λ -hyperons, ε_{rec} is the combined efficiency of the Λ - hyperon reconstruction, ε_{trig} is the trigger efficiency, ε_{pileup} is the suppression factors of reconstructed events, σ_{inel} - is the cross section for minimum bias inelastic C+A interactions(model).

Table. Trigger efficiency

4 AGeV	С		Al	Al		Cu	
$\varepsilon_{trig}(BD\geq 2)$	$0.80{\pm}0.02$						
$\varepsilon_{trig}(BD\geq 3)$			0.87±0.02		0.92±0.02		0.95±0.02
4.5 AGeV	С		Al		Cu		Pb
$\varepsilon_{trig}(BD\geq 2)$	$0.80{\pm}0.02$						
$\varepsilon_{trig}(BD\geq3)$		(0.83±0.02		0.91±0.02		0.94±0.02

Table. ε_{pileup} suppression factors.

Selection	4AGeV	4.5AGeV		
T0==1	+	+		
BC2==1	+	+		
Veto ==0	+	+		
С	0,674	0,529		
Al	0,740	0,618		
Cu	0,779	0,621		
Pb	0,784	0,686		

Yields of the $\Lambda \rightarrow p\pi^{-}$

Preliminary

Results of the yields obtained by the 8*8 method.								
Target	Full (yields ± stat ± sys_mean)	I period (yields ± stat ±sys_mean_Iper)	II period (yields ± stat ±sys_mean_IIper)					
		Yields total, 4.0 GeV						
C + C	0,0112±0,0027±0,00163	$0,0112\pm0,0039\pm0,0008$	$0,0107\pm0,0033\pm0,0009$					
C + Al	$0,0261\pm0,0068\pm0,00171$	0,0261±0,0068±0,00171 0,0277±0,0075±0,0048						
C + Cu	0,0302±0,0063±0,00309	0,0345±0,0093±0,0019	0,0273±0,0092±0,0066					
C + Pb	0,039±0,0153±0,00215	0,039±0,0153±0,00215	-					
		Yields total, 4.5 GeV						
C + C	$0,0125\pm0,0038\pm0,0024$	$0,0124\pm0,0060\pm0,0015$	$0,0117\pm0,0047\pm0,0014$					
$\mathbf{C} + \mathbf{A}\mathbf{l}$	0,0226±0,0055±0,0072	$0,0221 \pm 0.0083 \pm 0,0071$	0,0228±0,0070±0,0083					
C + Cu	0,0369±0,0074±0,0059	0,0346±0,0110±0,0046	$0,0354 \pm 0,0093 \pm 0,0032$					
C + Pb	0,0362±0,0109±0,0047	0,0387±0,013±0,00101	$0,0389 \pm 0,0185 \pm 0,0057$					

Signal distribution in bins of P_T (C+A, 4.0AGeV)

Signals were evaluated for each period. The same of the signals should coincidence with the signal evaluated for the full data sample.

Determination of slopes

from momentum spectra

where $m_T = \sqrt{m_A^2 + p_T^2}$ is the transverse mass, the normalization N and the inverse slope parameter **T** are free parameters of the fit;

13.03.2024

from momentum spectra

The measured spectra of the Λ yields in p_T are parameterized by the form: $1/p_T d^2 N/dp_T dy = N \cdot \exp(-(m_T - m_A))/T)$),

where $m_T = \sqrt{m_A^2 + p_T^2}$ is the transverse mass, the normalization N and the inverse slope parameter **T** are free parameters of the fit;

RESULTS

Preliminary

	T ₀ , MeV,	T ₀ , MeV,	T ₀ MeV,	T ₀ MeV,
4.0 AGev	C+C	C+Al	C+Cu	C+Pb
DCM-QGSM model	125.9	120.2	133.2	130.2
UrQMD model	107.3	128.0	132.8	135.5
PHSD model	86.6	100.0	105.4	98.2
Exp Data, Full	114.1±19.3	108.2±16	96.1±13.8	
Exp Data, period I	117.6±17.8	104.6±10.6	102.9±19.0	-
Exp Data, period II	$111.9\pm\!20.2$	109.1±17	104.5±16.3	

4.5.4.C.o.V	T ₀ , MeV,			
4.5 AGev	C+C	C+Al	C+Cu	C+Pb
DCM-QGSM model	132	133	135	142
UrQMD model	122	128	130	134
PHSD model	101	106	109	108
Exp Data, Full	118.6±16.3	142.8±13.6	113.1±8.2	110.8±11.2
Exp Data, period I	123±21.2	145.9±18.2	109.8±6.7	125±31.9
Exp Data, period II	118±18.2	145.2±17.1	113.8±4.7	99.7±18.5

The systematic uncertainty will be estimated for slopes. The expected value of systematic uncertainty will be 40-50%.

Summary and plans

Done:

- ✓ The Λ^0 reconstruction efficiency was determined in each of the 64 cells for C+A reaction separately in MC.
- ✓ Cells with ω_i < 0.01 were identified and excluded from the analysis.
- ✓ An extrapolation procedure was developed and applied to measure regions with $\omega_i < 0.01$.
- ✓ Mass distributions Λ^0 were obtained with weight ω_i for each cell out of 64 in the MC and physical data.
- ✓ Preliminary results on the computation of yields and cross sections were obtained for C+A, (4, 4.5 AGeV).
- ✓ The slopes from the transverse pulse spectra were obtained for C+A (4, 4.5 AGeV)

Plans:

Obtain final results taking into account systematic error. Complete the analysis note. Prepare paper draft.

Приехали...

Thank you for your attention!

Back up

Yields of the $\Lambda \rightarrow p\pi^{-}$

III измерение – получено методом разбиений 8*8;

 $\varepsilon rr_{sysl_meas} = abs[Y_Imeas - Y_IIImeas]/Y_Imeas$ - систематика относительно результатов, полученных эмбендингом – I измерение (4*4);

 $\varepsilon rr_{sysII_meas} = abs[Y_IImeas - Y_IIImeas]/Y_IImeas$ - систематика относительно результатов, полученных альтернативным методом анализа– II измерение (4*4);

 $\varepsilon rr_{sysIV_meas} = abs[Y_IVmeas - Y_IIImeas]/Y_IVmeas$ - систематика относительно результатов методом (4*4) с взвешенными гистограммами;

 $sys_mean = \varepsilon rr_{sysI_meas} + \varepsilon rr_{sysII_meas} + \varepsilon rr_{sysIV_meas}/3$ – среднее значение ошибки I и II, IV измерений.

sys_mean_Iper = $\varepsilon rr_{sysII_meas} + \varepsilon rr_{sysIV_meas}(4 * 4)/2$ – среднее значение ошибки II, IV измерений для периода 1.

 $sys_mean_IIper = \varepsilon rr_{sysII_meas} + \varepsilon rr_{sysIV_meas}(4 * 4)/2 - - среднее значение ошибки II, IV измерений для периода 2.$

Signal distribution in bins of P_T

(C+A, 4.5AGeV)

13.03.2024

K. Alishina

BM@

Differential yields in bins of P_T (C+A, 4AGeV)^{BM@}

Differential yields in bins of P_T (C+A, 4.5AGeV^{PA@})

C+C (4.5GeV), in bins of P_{τ}

Determination of slopes from momentum spectra

Determination of slopes from momentum spectra

C+Al(4.0GeV), in bins of P_{T}

BM@

from momentum spectra

Determination of slopes

C+C (4.5GeV), in bins of P_{T}

Determination of slopes from momentum spectra C+Cu(4.0GeV), in bins of P_{τ}

Determination of slopes

from momentum spectra

C+Al(4.5GeV), in bins of P_{τ}

Determination of slopes from momentum spectra

One-dimensional mass distribution of the $\Lambda^0 \rightarrow p\pi^-$ (DATA), without weight

1.20 < y < 1.45 1.45 < y < 1.65300 summ_4y_b1 summ_4y_b2 6559 Entries 240 Entries 8921 1.131 Mean Mean 1.127 Std Dev 0.02697 Std Dev 0.02765 220 250 200 200 180 160 150 140 120 100 100 80 _____ _____ 50 1.08 1.1 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.08 1.09 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.85 < y < 2.1 1.65 < y < 1.85summ_4y_b3 summ_4y_b4 12605 Entries Entries 16551 Mean 1.125 Mean 1.126 400 Std Dev 0.02735 Std Dev 0.02757 300 350 250 300 200 250 150 200 _____ 1.14 1.15 1.16 1.08 1.09 1.1 1.11 1.12 1.13 1.17 1.18 1.14 1.16 1.17 1.08 1.09 1.1 1.11 1.12 1.13 1.15

C+C,4 AGeV

K. Alishina

1.18

One-dimensional mass distribution of the $\Lambda^0 \rightarrow p\pi^-$ (DATA), without weight

0.10 < pt < 0.30 0.30 < pt < 0.50 summ_4pt_b1 summ 4pt b2 500 Entries 18225 15146 Entries 450 Mean 1.128 Mean 1.127 Std Dev 0.02749 Std Dev 0.02749 450 400 400 350 350 300 300 250 250 200 200 1.08 1.11 1.12 1.13 1.14 1.16 1.18 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.09 1.1 1.15 1.17 1.08 1.09 1.1 0.75 < pt < 1.05 0.50 < pt < 0.75 summ_4pt_b4 260⊢ summ_4pt_b3 50 Entries 2593 8672 Entries Mean 1.130 240 Std Dev 0.02788 Mean 1.127 45 Std Dev 0.02726 220 40 200 35 180 30 160 25 140 120 20 100 15 🗭 80 1.17 1.18 1.17 1.18 1.08 1.12 1.14 1.15 1.16 1.08 1.09 1.11 1.12 1.13 1.14 1.15 1.16 1.09 1.1 1.11 1.13 1.1

C+C,4 AGeV

K. Alishina

32

One-dimensional mass distribution of the $\Lambda^0 \rightarrow p\pi^-$ (DATA), without weight

C+Cu,4 AGeV

