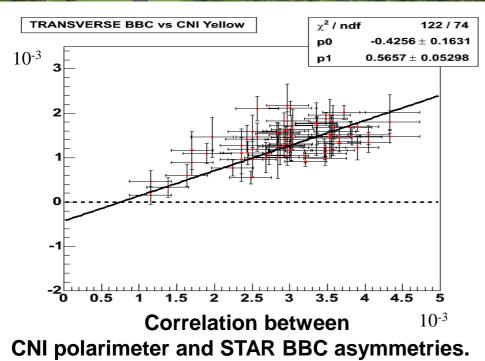


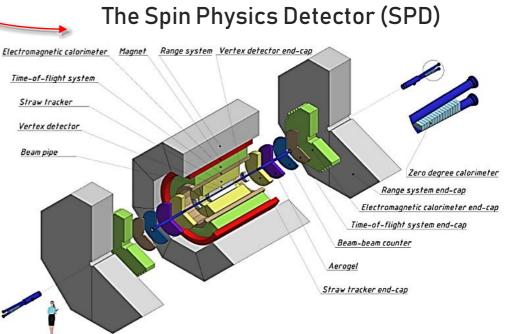
BBC status report

A.V.Tishevsky on behalf of JINR-MEPhI BBC

VII SPD Collaboration Meeting

21 May 2024

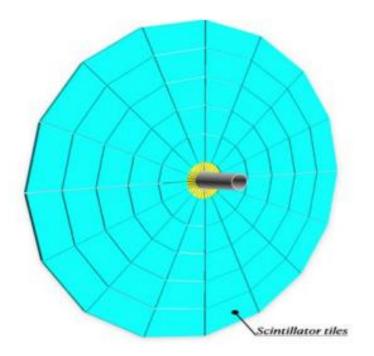

OUTLINE


- □ Introduction
- □ Simulation
- 🖵 R & D
 - The hardware of BBC tests part
 - Materials selection test part
 - Prototype assembling test part (preliminary)
- Results
- Plans
- Conclusions

Introduction

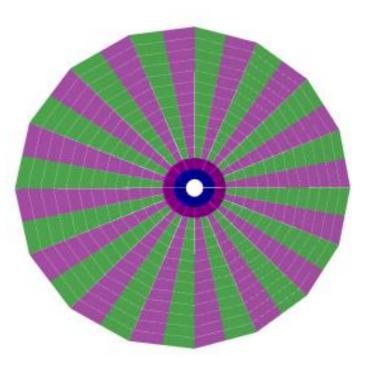
General

The Beam-Beam Counters (BBC) for SPD


The main purpose of BBC is <u>the permanent</u> <u>monitoring of the beam polarization</u> using the azimuthal asymmetry of the inclusive charged particles yield.

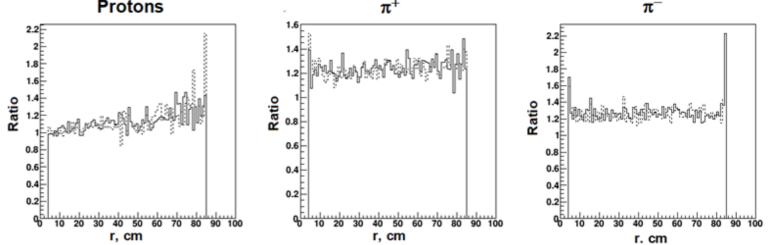
+ event plane detector for HI physics.

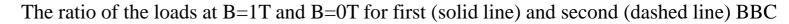
• Scintillator tiles part at the distance ~1.7 m

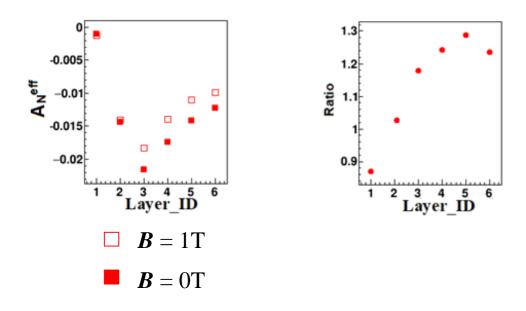

Introduction

TDR version of BBC

local polarimetry

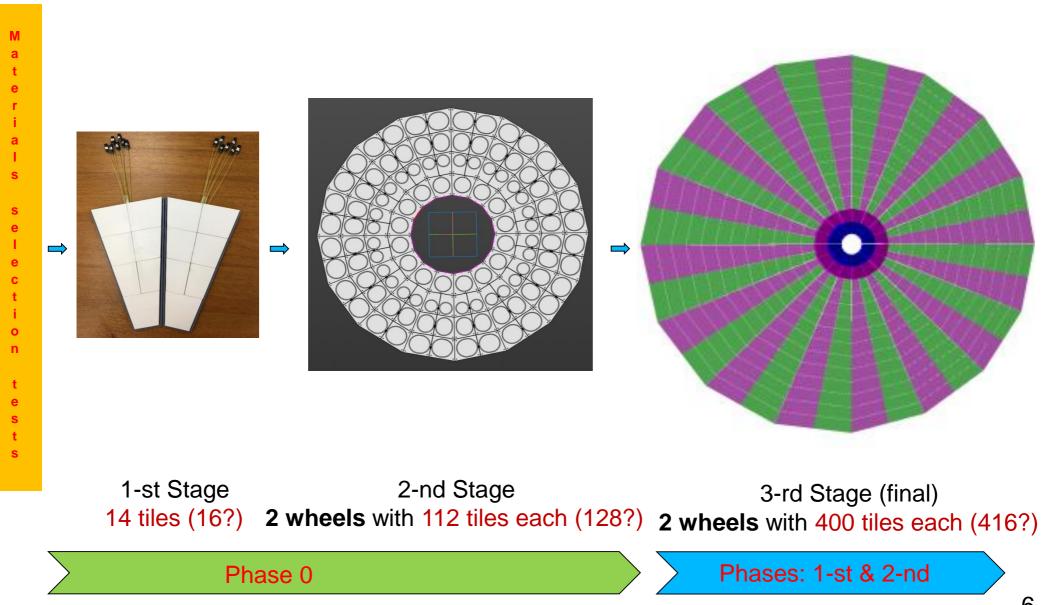

TDR 2023 400 tiles


- local polarimetry
- event plane determination


Simulation (pp)

MF effect.

The influence of the magnetic field on the BBC load has been estimated by the simulation of the pp-interaction in the SPDRoot framework. It presence **increases the BBC load**. This is especially observed for π^+ , and π^- . For protons the influence of the magnetic field is observed in the range of the big radiuses. π^+



The analyzing powers A_N^{eff} for inclusive reaction have been calculated for case when the B=0 and B=1T. The presence of the magnetic field leads to a change of the A_N^{eff} up to 22%.

Simulation of the pp-scattering in BBC in the magnetic field (**A.Terekhin**) see talk (Friday 24/05) R & D

Stages of detector production

R & D

Tile height 55.7 mm

25 tiles in sector (similar to STAR EPD)

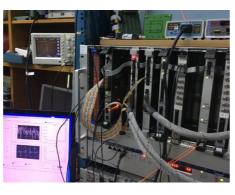
Proposal for prototype BBC design

0 Scintillator: **Optical cement:** е ROW Fibers: 3 (L 0 n 2 (L;R) 1 (L;R) centra SiPMs: Bucz 1 B

Readout system: ✓ CAEN FERS-5200 chemical mating VS polished (Tyvek or Mylar covered) OK-72 vs CKTN Med (mark E or B) Saint-Gobain Crystals (SG92S) VS for KURARAY (Y-11) Phase 1 \checkmark SensL 1x1 mm² (main option 2023)

The BBC prototype options:

The hardware of BBC tests part


Stand for BBC measurements

TRB-3 (10 ps)

Together with V.Chmil (JINR), S.Morozov, E.Usenko (INR)

The VME based DAQ

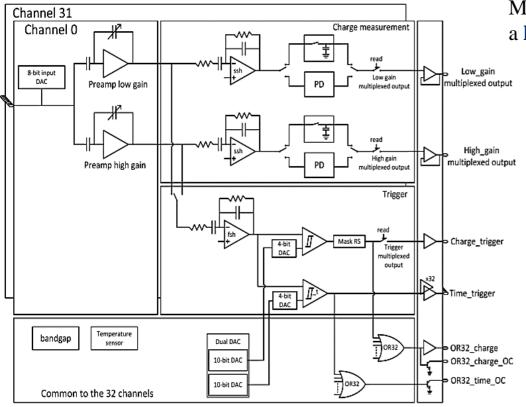
Isupov A.Yu. // EPJ Web Conf. 2019. V.10003. P.204

CAEN FERS 5200

DT5202 (citiroc 1A chip) DT5203 (picoTDC chip) DT5215 (Concentrator)

The stand for BBC

External trigger by coincidence of two scintillators with PMTs readout

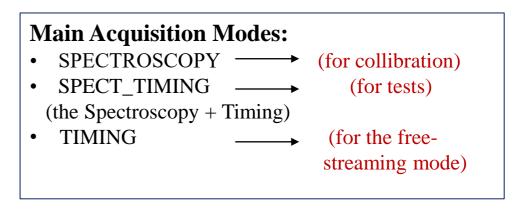

PMT Hamamatsu H10720-110

The hardware of BBC tests part

CAEN DT5202

FERS-5200 is an extendable high speed front-end readout system.

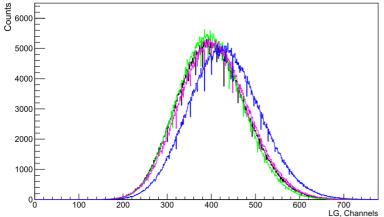
- Concentrator DT5215 for the possibility of expanding the number of channels to 8192.
- DT5203 (with picoTDC chip) for high-resolution multi-hit time measurements.
- **DT5202** (with Citiroc 1A chip) based on the 64-channel module **for SiPM**.

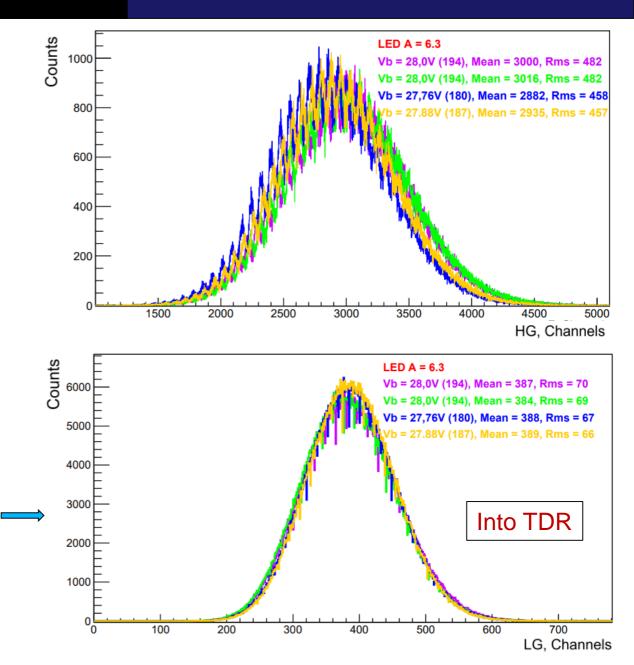


Fine for testbeam and Phase 0 experiments.

Citiroc 1A allows triggering down to 1/3 p.e. and provides the charge measurement with a **good noise rejection**. Moreover, Citiroc 1A outputs the 32-channel triggers with a **high resolution timing** (better than 100 ps).

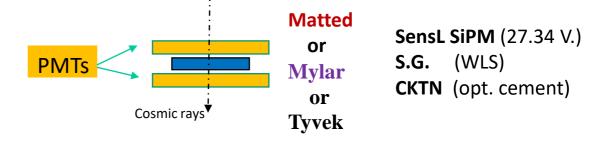
Each channel has low (LG) and high (HG) gain preamplifiers providing a wide dynamic range.



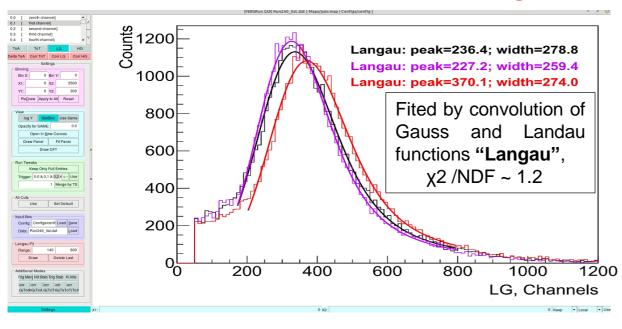

Calibration method (Led source)

DT5202 with CAEN LED Driver (SP5601)

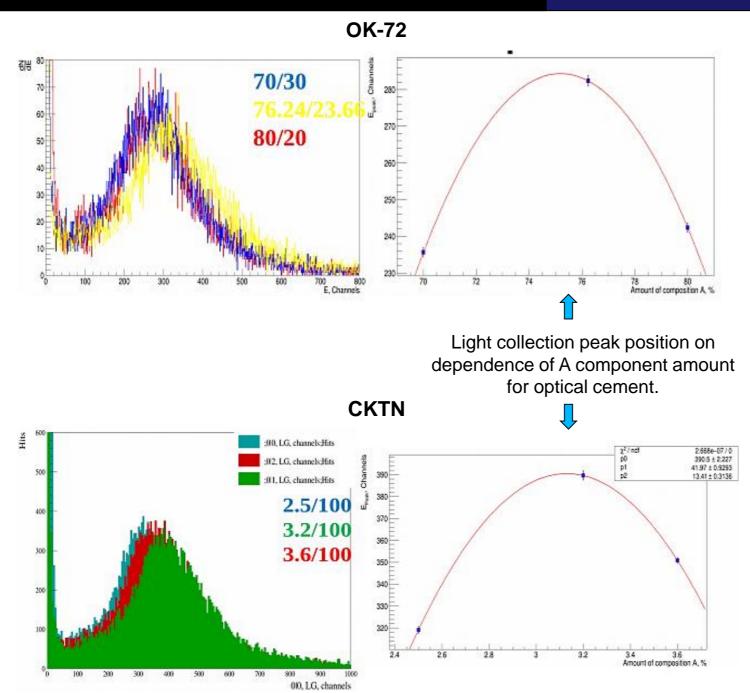
Not calibrated



Materials selection test part


Scintillator cover

The "FersRun" framework have been designed.

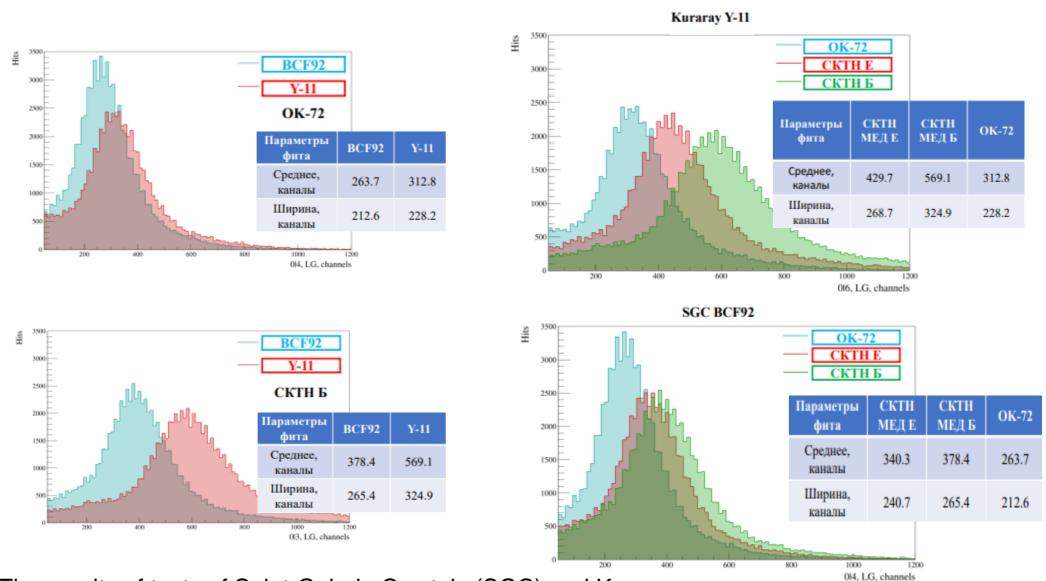


The amplitude spectra of the BBC prototype scintillation tile coated with **Mylar** or **Tyvek**, as well as covered with **Matted** options.

The option with matted tiles is more priority.

Materials selection test part

Optical cement (compositions comparison)



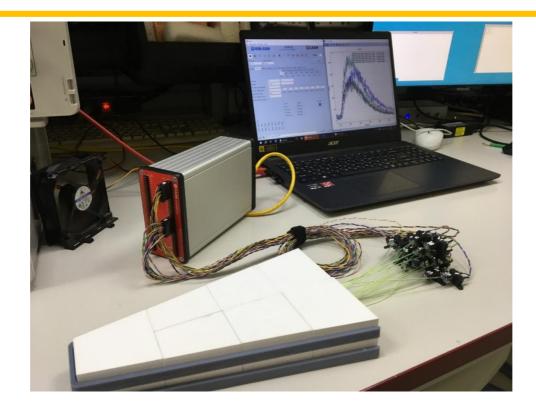
The choice of optical cement is also important. The candidates were OK-72 and CKTN. From the point of view of mass production, the ratio of components and their influence is important.

This influence is showed. Datasheet ratio will be used and closely monitored.

Materials selection test part

Optical cement and WLS

The results of tests of Saint-Gobain Crystals (SGC) and Kuraray

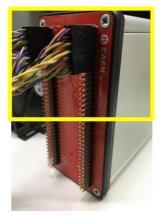

WLS fibers with different types of cement are presented.

CKTN mark B paired with SGC fiber are the most appropriate candidates for prototype assembly.

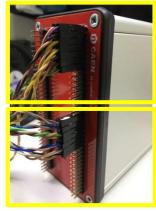
More detail (**P.Teterin**)

Selected options:

- Scintillator: Uniplast-Vladimir (chemical mating)
- Optical cement: CKTN Med mark B
- Fibers:Saint-Gobain Crystals (SG92S)
- SiPMs: SensL 1x1 mm² (tests temperature \leq 25.3 °C)



Trigger logic parameters for DAQ


M Janus					-		×
File FWupgrade GUI Mod	e Help						
FERS -	5200	JANU Ver. 5202 - Rel.3.2.4 - 22	-	Ű		EN	
		¢\$		F	lun# 24	1 🛊	
	atistics Type IA Cnt V					Appl	y
Connect HV_bias RunCtr	AcqMode Discr Sp	ectroscopy Test-Probe	Regs Statistic	s Log			
		B0 B1 B2 B3 B4 B5 B6	B7 B8 B9 B10) B11 B12 B13 B	14 B15		
Acquisition Mode	SPECT_TIMING ~		ſ	bd -		×	
Enable ToT	$\overline{\mathbf{v}}$			CHANNEL MASK	Brd 0	~	
Bunch Trigger Source	TLOGIC ~			Enable all	Disat		
Veto Source	DISABLED ~			0 1 2 3	4 5	6 7	
Validation Source	T0-IN ~			8 9 10 11	12 13	14 15	
Validation Mode	DISABLED ~			16 17 18 19 24 25 26 27	20 21 28 29	22 23 30 31	
Trigger ID Mode	TRIGGER_CNT ~			32 33 34 35	36 37	38 39	
Trigger Logic	AND2_OR32 V			40 41 42 43 48 49 50 51	44 45 52 53	46 47 54 55	
Majority Level	OR64			48 49 50 51 56 57 58 59	60 61	62 63	
Periodic Trigger Period	AND2_OR32 OR32_AND2			Pixel Map	Do	ne	
Tref Source	MAJ64						
Tref Window	MAJ32_AND2 1.0 us						
Tref Delay	-400 ns						
T0-Out	ZERO ~						
T1-Out	ZERO ~						
Ch Enable Mask Chip 0	0xFFFFFFF	0x3FFF					
Ch Enable Mask Chip 1	0xFFFFFFF	0x0	CHANNEL M	IASK			
Status Ready to star	rt Run #241				Ru	n O	HV O

The tests were performed in **self-triggering mode**. The 2 trigger logic options were tested. 1 chip was used for the first case, for the other case the channels were allocated to two chips.

1-st Citiroc 1A was used

AND2_OR32 Parameter Both Citiroc 1A were used

OR32_AND2 Parameter

1 our of working

Time Stamp	3600.860 s	Time Stamp
Trigger-ID	6884	Trigger-ID
Trg Rate	2.717 cps	Trg Rate
Trg Reject	0.51%	Trg Reject
Tot Lost Trg	35	Tot Lost Trg
Event Build	0.00%	Event Build
Readout Rat	245.409 B/s	Readout Rat
T-OR Rate	0.000 cps	T-OR Rate

amp	3600.410 s
-ID	7332
e	2.867 cps
ect	0.05%
t Trg	4
uild	0.00%
t Rat	258.667 B/s
ate	0.000 cps

~4.1k counts/channel

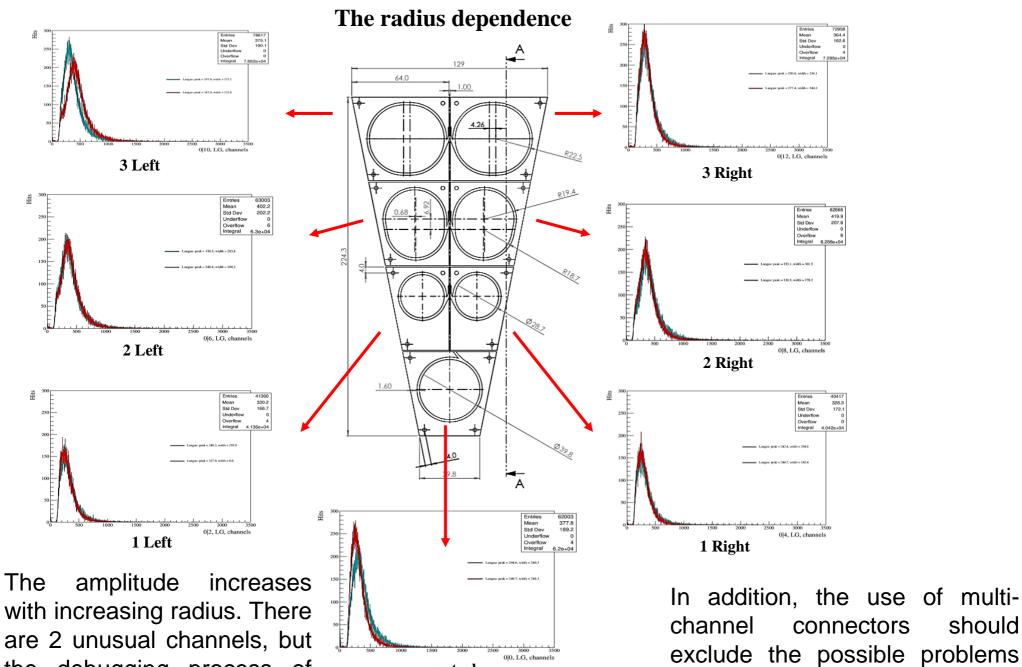
~3.8k counts/channel

The first case, a more hard trigger, used to demonstrate the following results.

Hits

1-st sector

Amplitude spectra of two sectors (AND2_OR32)

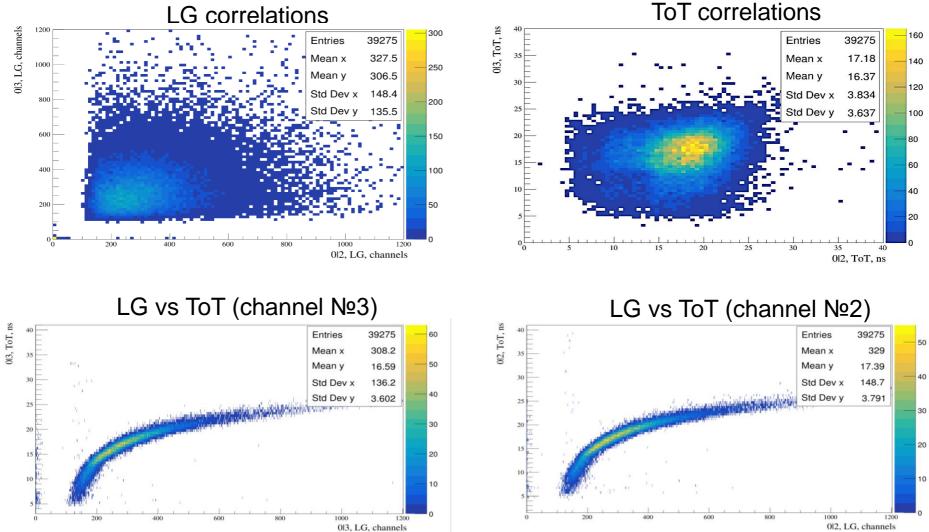

2-nd sector

300 300 Hits 62003 Entries Entries 61985 250 250 Langau: peak = 249.7, width = 248.3 200 200 angau: peak = 233.0, width = 270.7 angau: peak = 294.6, width = 280.3 ngau: peak = 244.7, width = 242.4 angau: peak = 248.3, width = 293.9 ngau: peak = 348.8, width = 281.8 peak = 242.4, width = 294.8 ngau: peak = 330.5, width = 276.2 150 150 Langau: peak = 387.0, width = 322.4 ngau: peak = 330.5, width = 283.8 Langau: peak = 277.4, width = 244.2 ngau: peak = 353.1, width = 301.5 ngau: peak = 297.0, width = 272.2 100 100Langau: peak = 290.8, width = 254.1 50 0^{1}_{0} 200 400 600 1000 1200 1400 200 400 600 800 1000 1200 1400 800 0|1, LG, channels 00, LG, channels

□ the amplitude spectra from seven tiles for each prototype.

Comparison of sector pairs

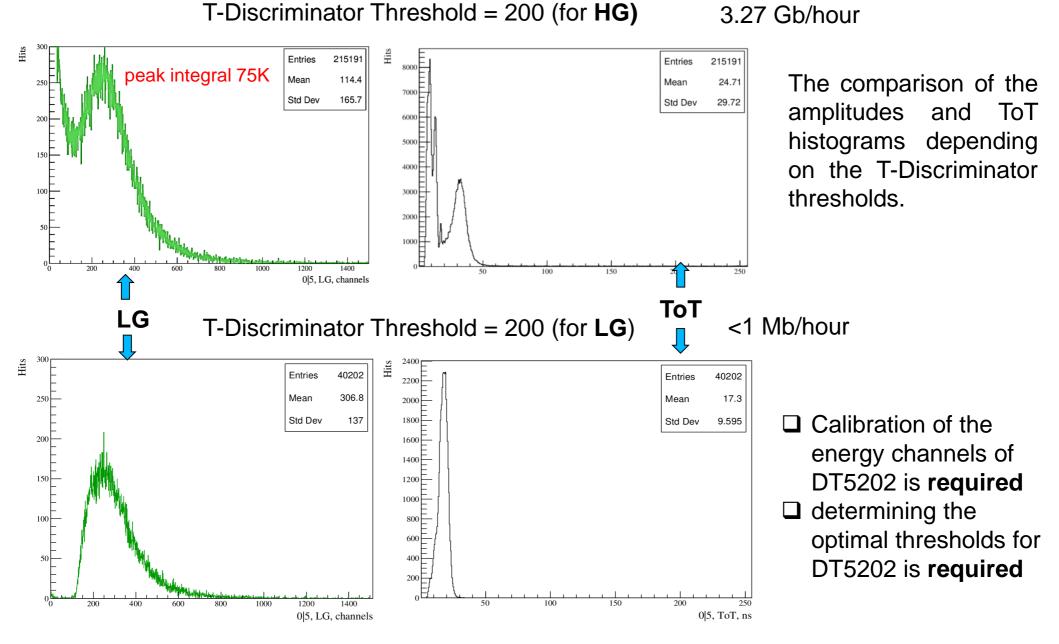
of single connectors.


central

the debugging process of mass production continues.

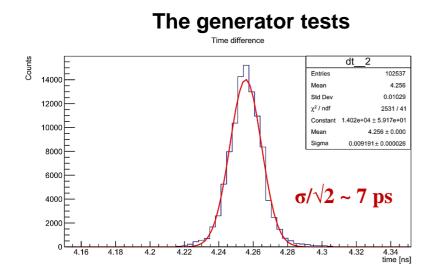
should

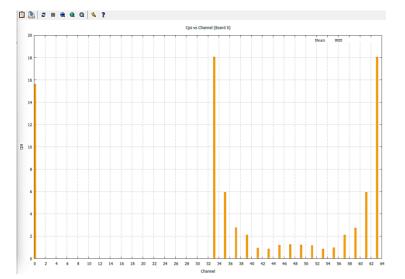
Correlations

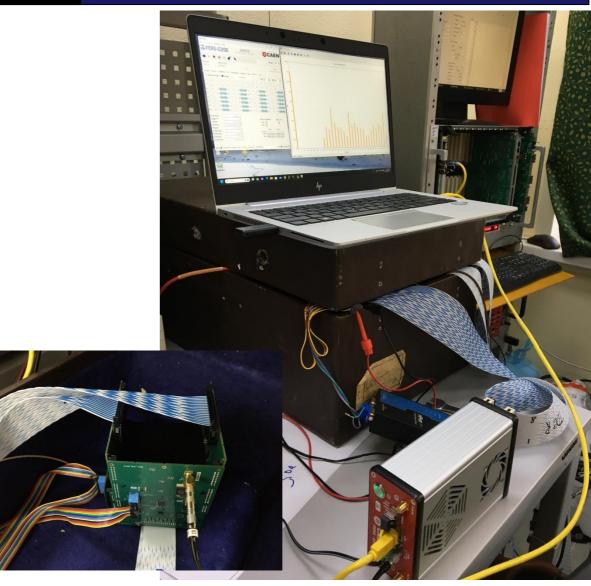

LG correlations

Offline software for the data from FERS5200 (n*DT5202->DT5215) is developped

- Correlation of energy deposition for 2 channels, as well as the time information for this channels. ToT for the free-streaming mode of DAQ
- □ The collibration of ToT is required


FERS DT5202 working options. Data rate (different thresholds)


19


FEE studies

DT 5203 (picoTDC chip)

The ToT signals (cosmic rays tests)



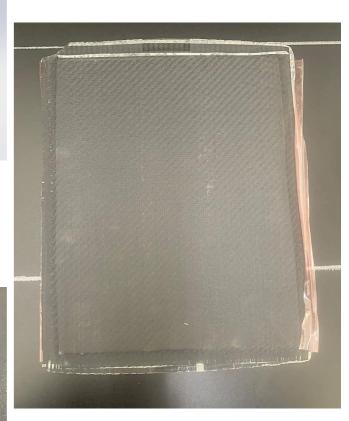
Together with M. Buryakov (JINR), S. Buzin (JINR), A. Dmitriev (JINR)

- 1. New geometry of the outer part of BBC is **defined**.
- 2. Prototype materials are **selected**
 - Scintillators manufacturer (Uniplast-Vladimir).
 - Scintillator cover, optical cement, and WLS types.
- 3. Two 7-tiles prototypes designed, manufactured and carrying out testing
- 4. FEE and digitizer option for Phase0 and Phase1 (possibly) are **selected**.
- 5. Software for the data analysis and simulation is **developed**.

Extended design

Additional tile for sector. The 8-tiles prototype.

Extended design


The 8-tiles prototype

The trapezoids have already been done

Sandwich support: Carbon fiber+foam plastic 3 layers for prototypes 5 layers for detector

Schedule of works

The manpower involved

Г						2024	/ear								2025	vear						20	26 vear		٦
	N⁰	Наименование	1-st quarter	2-n	d quarter	3-rd q			4-th quarte	er	1	-st quarter	2-nd qua	arter		3-rd q	uarter	1	4-th quart	er	1.	st quarter		2-nd quarter	-
								October				February March			Julv			r October							ne
	1	Estimation of light loss on fiber bending														- ingen									-
		Manufacturing and testing of samples with various optical																							
	2	cement options																							
		Selection of final assembly components																							
	4	Production of a three-layer base for a prototype																							
	5	Assessment of the strength of the base																							
	6	Development of 2 sector prototypes [2*7 tiles]												20	C			n							
L L		Astimation tests															ou								
		Calibration of the energy scale of DT5202											<u>۱</u>	/P	I L	ᅴᄃ	P :	7_	1 /1	၂ ဂ	imi	ulati	ond	-)	
	_	Determining the optimal thresholds for DT5202																					UIR	>/	
	6.4	Determination of temperature dependence and its consideration											Г		NI	D	:	21	eim	ulat	ion	c)			
	0.4	in tests																				3)			
		Prototype testing							1	2			Ν		P	hl	:	ah		10					
		Data processing and interpretation of results																	out	10					
		Tests with Hamamatsu SiPM (1.3x1.3 mm^2)											_★ ∧	Vo	f	IIN	IR:	2							
		Development of the inner part of the detector (the space													ιU			•							
		between the tube and the proposed BBC concept)																							
		Development of mapping_a for the BBC subsystem																							
	10	Development of 2 detector prototype wheels [2*(8*16)																							
		=256 tiles]																							
		Production of the prototype frame																							
		Production of a five-layer base for a prototype																							
╳	10.3	Implementation of composite sleeves for fixings, and milling					-	1																	
	10.4	Installing the base into the frame			-		11																		
	10.5	Development and manufacture of optical connector modules				1. All	1			S															
		(WLS <-> transparent fiber)					97 0		In the second																
		Development and manufacture of connectors (transparent fiber <-> SiPM)					SAITPA																		
\bigstar		Development and manufacture of a printed circuit board (PCB) for SiPM					н змт		\bigcirc																
		Checking the performance of connectors and PCB						1																	1
		Prototype testing (test beam)																		1					1
		Data processing and interpretation of results					1							1	1					1					1
		Coordinating the output of detector cables to the BBC control													1										1
	11	room																							
	12	Assembly of 2 rings of a full-scale detector													1										1
		Manufacturing of the frame (2 parts)					1							1	1										1
		Manufacturing of a five-layer base for the detector					1							1	1										1
	12.3	Implementation of composite sleeves for fixings, and milling					1								1										1
		Installing the base into the frame					1								1										1
		Full camera testing		1			1								1			1							1
		Data processing and interpretation of results					1								1			1							7
		Dismounting of detectors		1											1										1
		Transferring detectors to SPD					1								1			1							1
F		Installation of detectors		1			1								1			1						21	1
		Cross check and tests					1							1	1									24	
L				L	I			I	I			II					1	1	1						

Conclusions

- I. The R&D phase for the scintillation tiles is almost finished.
- II. The main task for 2024 is to produce and to test the 8 tiles prototypes.
- III. The manufacture of 2 small BBC wheels (128 tiles each) for SPD Phase 0 is planned for the end of 2024.

Risks 2024-2025:

- FERS5200 CAEN availability. We have only 3 DT5202 boards.
- Radiation conditions for HI collisions. Simulation for beam pipe& small BBCs& Bi+Bi is required.

Risks >2024:

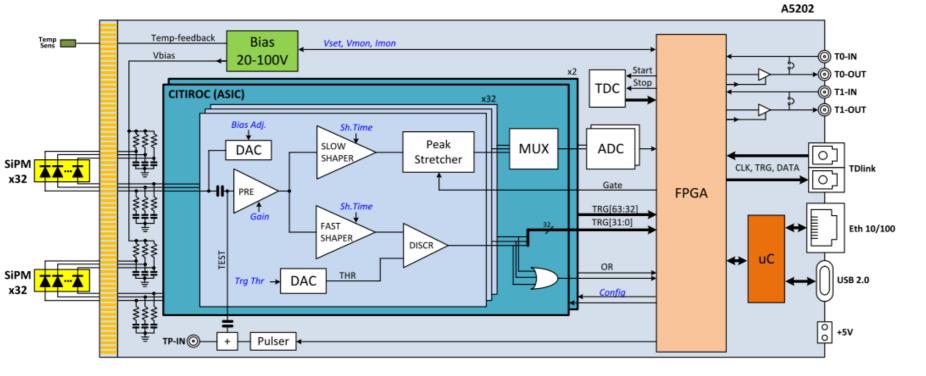
• New electronics (localized in RF) is needed: FEE, digitization, L1.

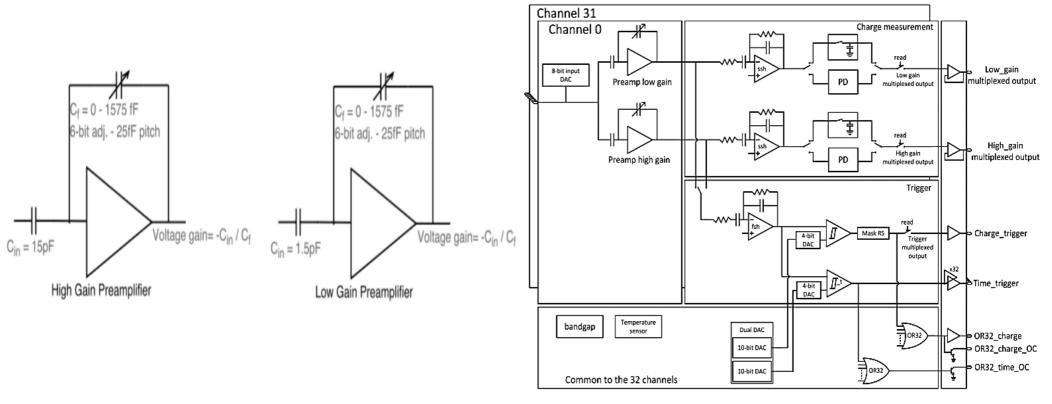
Thank you for the attention!

Backup

T-Discriminator Threshold = 200 (for **HG**)

Time Stamp	3599.318 s
Trigger-ID	48792418
Trg Rate	5.862 kcps
Trg Reject	56.77%
Tot Lost Trg	27697364
Event Build	0.00%
Readout Rat	926.554 kB/s
T-OR Rate	0.084 cps


T-Discriminator Threshold = 200 (for **LG**)


Time Stamp	3600.860 s
Trigger-ID	6884
Trg Rate	2.717 cps
Trg Reject	0.51%
Tot Lost Trg	35
Event Build	0.00%
Readout Rat	245.409 B/s
T-OR Rate	0.000 cps

3.27 Gb/hour

<1 Mb/hour

- Triggers of consecutive channels are sent to an AND logic operator (e.g. CH0&CH1, CH2&CH3, etc.). The 32 outputs are then sent to an OR logic operator.
- OR32_AND2: Triggers of each Citiroc-1A (32 channels each) are sent to an OR logic operator. The 2 output signals (one for each Citiroc-1A) are then sent to a logic AND operator.

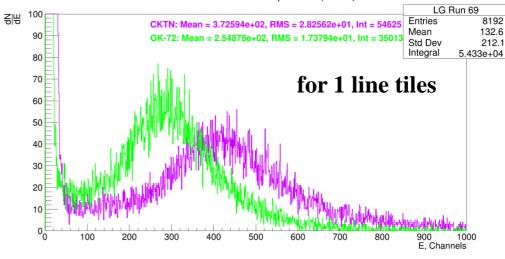
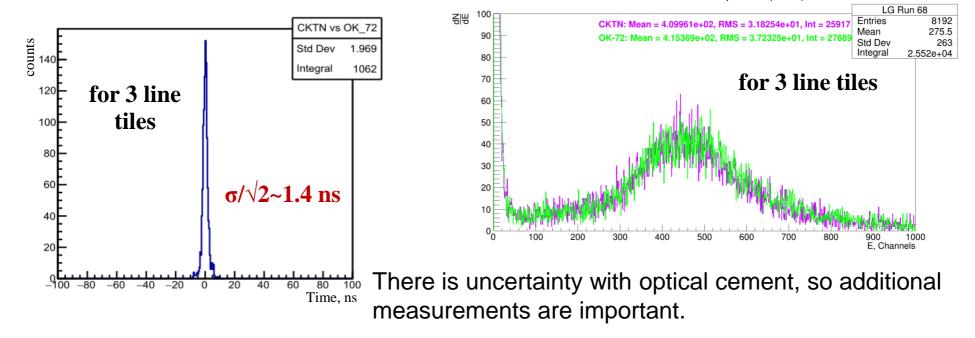
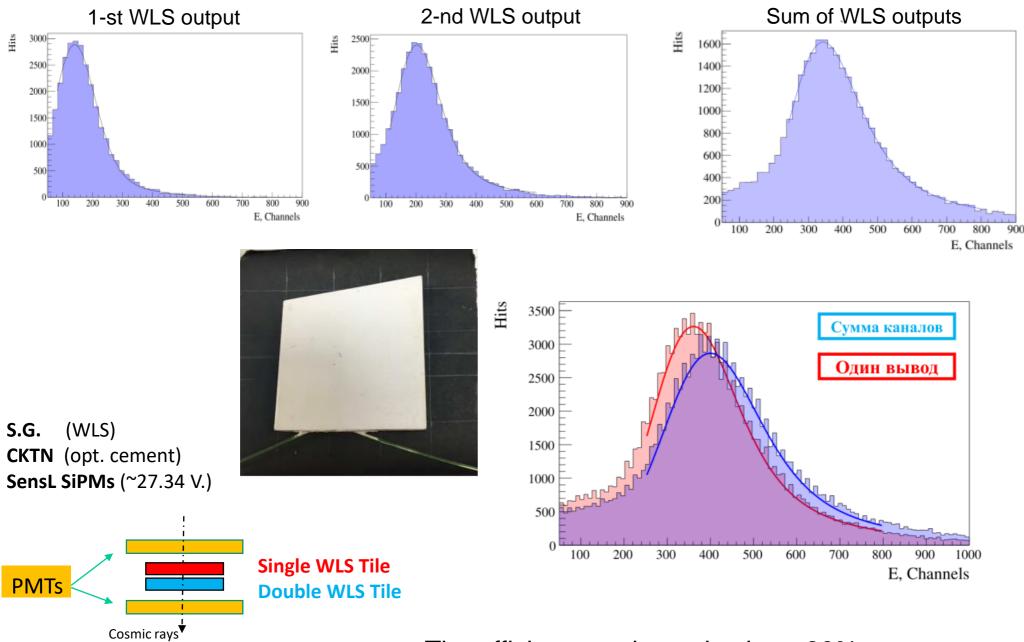

// // File Format Versi		*****	*****	*******			
// Janus Release 2.2							
/ Acquisition Mode:		ing					
/ Energy Histogram							
/ ToA/ToT LSB: 0.5							
/ Run start time: 1		12:34:	25 202	2 UTC			
/*************	*********	******	******	*******			
Tstamp us	TrgID	Brd	Ch	LG	HG	ToA ns	ToT n
2.880	0	00	00	39	39		100
		00	01	36	35	and the	
		00	02	36	20	919.0	8.
		00	03	42	55		0.01
		00	04	30	9	-	
		00	05	40	41	-	
		00	06	36	12	-	1
		00	07	38	69	-	
		00	08	33	13	00.007	3162
		00	09	31	32766	955.0	5.
		00	10	38	160	140.0	14.
		00	11	37	282	74.0	20.
		00	12	45	141	-	
		00	13	105	785	71.0	28,
		00	14	35	14	-	
		00	15	105	768	71.0	28.
		00	16	35	69	-	
		00	17	36	101	855.0	8.
		00	18	38	100	-	
		00	19	117	861	71.0	29.
		00	20	35	32		
		00.	21	44	236	83.5	8.
		00	22	38	25	-	
		00	23	57	240	83.0	9.0
		00	24	36	32767	-	
		00	25	32	12	-	
		00	26	39	53	-	
		00	27	33	49	-	

Fig. 3.36: Event List example in Spectroscopy + Timing Mode (Ascii format), where ToA and ToT are expressed in ns.

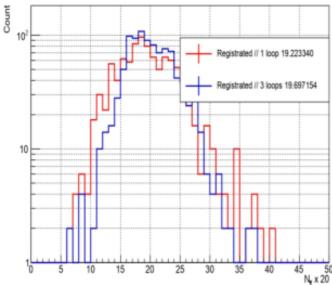

CKTN Med and OK-72 difference

Trigger time resolution ~650 ps



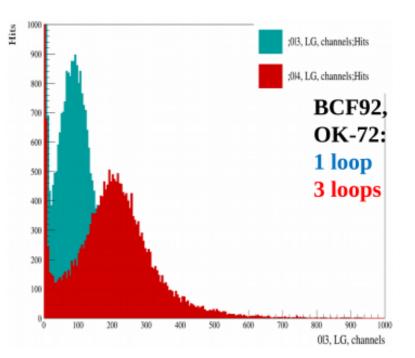
CKTN and OK-72 Comparison (line 3)

CKTN and OK-72 Comparison (line 1)


The efficiency of single channel output tiles

The efficiency estimate is about 90%.

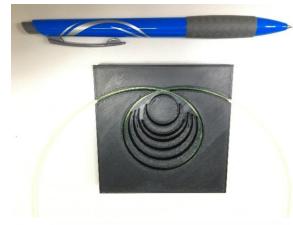
Ways to reduce the cost of the BBC

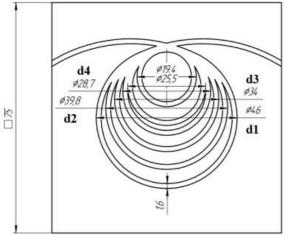

Amount of fiber loops

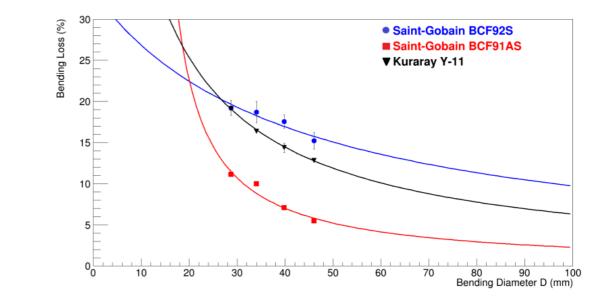
For more details, see

https://indico.particle.mephi.ru/event/389/con tributions/3829/attachments/2283/4212/-12--.pdf

Fit Params	1 row	3 rows
Mean, Channels	86.7	202.6

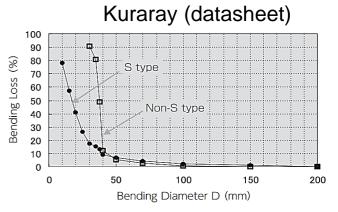

Experimental data: Light collection of second row tiles with SG BCF92 and OK-72, but: 1 (blue) and 3 (red) rows of WLS fiber, starting from the same depth


Number of REG photons 1000 events


Fibers bending loss

Tool for bending loss tests

PRELIMINARY


Difference between d1 and d4 diameters:

SG BCF91AS - 6.0%

SG BCF92S - 4.7%

Kuraray Y-11 – 8.5%

for 1 rotation (inside the tiles is 3)

Saint-Gobain Crystals vs KURARAY fibers difference. (CKTN optical cement)

Saint-Gobain Crystals fibers

Specific I	Specific Properties of Standard Formulations										
Fiber	Emission Color	Emission Peak, nm	Decay Time, ns	# of Photons per MeV**							
BCF-10	blue	432	2.7	~8000							
BCF-12	blue	435	3.2	~8000							
BCF-20	green	492	2.7	~8000							
BCF-60	green	530	7	~7100							
BCF-91A	green	494	12	n/a							
BCF-92	green	492	2.7	n/a							
BCF-98	n/a	n/a	n/a	n/a							

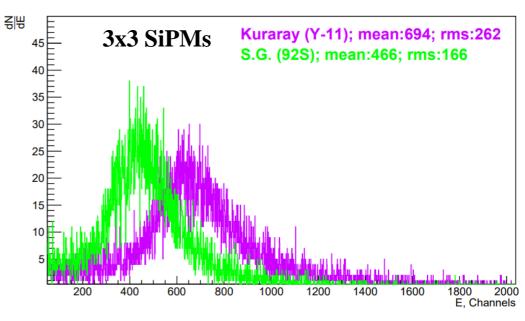

** For Minimum Ionizing Particle (MIP), corrected for PMT sensitivity

Table 1. Optical cements and their parameters									
Brand	Viscosity,	Operating	Spectral	Refractive					
	cPs	temperature	characteristics	index					
		range							
EJ-500	800	From -65	60-95% at	1.574					
			300-350 nm						
		to +105 °C	95-100% at						
			350-600 nm						
CKTN MED	$15 \cdot 10^{3}$	—	92-96%	1.606					
Mark E			500 nm						
OK-72	—	From -60	99% at	1.587					
		to $+60$ °C	400 -2 700 nm						

KURARAY fibers

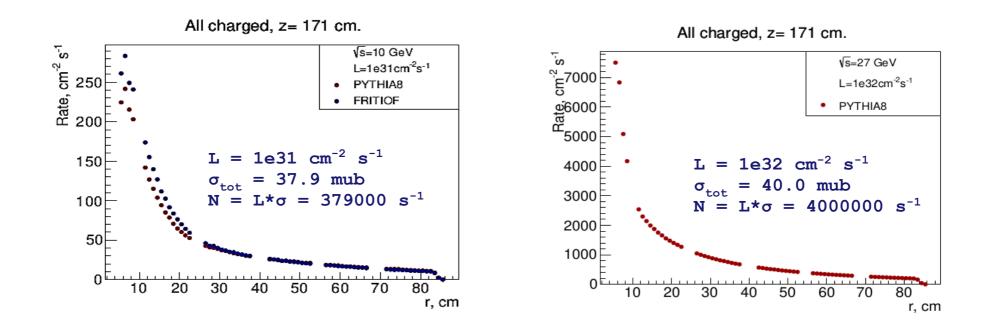
		Emission		Absorption Att.Leng. ²⁾ Peak[nm] [m]		
Description	Color	Spectra	Peak[nm]			Characteristics
Y-7(100)	green		490	439	>2.8	Blue to Green Shifter
Y-8(100)	green		511	455	>3.0	Blue to Green Shifter
Y-11(200)	green	See the	476	430	>3.5	Blue to Green Shifter (K-27 formulation) Long Attenuation Length and High Light Yield
B-2(200)	blue	following figure	437	375	>3.5	UV to Blue shifter
B-3(200)	blue		450	351	>4.0	UV to Blue shifter

Kuraray Y-11 fiber collects more photons.

Material selection: Optical cement

Run138 Run 139 Integral 2.451e+04 Integral 1.986e+04 counts 120 120 counts SIPM0 S.G.(f) SIPMO Y-11 Langau: peak = 395.1, width = 263.6 Langau: peak = 552.3, width = 349.2 SIPM1 SIPM1 100 Y-11 S.G.(f) 100 angau: peak = 533.1, width = 338.1 Langau: peak = 365.0, width = 269.0 SIPM2 SiPM2 S.G.(f) Y-11 Langau: peak = 304.4, width = 247.3 80 Langau: peak = 313.7, width = 237.7 80 SIPM3 SIPM3 S.G.(f) Langau: peak = 341.0, width = 253.3 Langaiz peak = 297.3, width = 241.1 60 60 40 20400600 1000 200 800 1200200400 600 800 1000 1200channels Row 2 channels Integral 2.451e+0 1x1 mm² SMTPA SiPM Langau: peak = 395.1, width = 263.0 Langeut peak = 411.7 S.G.(f) SIDE Y-11 Lanceur pe Langeu: peak = 533.1, width = 338.1 S.G.(f) SPM Langau: peak = 327.5, width = 265 SIPM3 Vbias~27,37V calibration for all Отсутствие влияния SiPMs Langesz peak = 354.4, width = 247.3 Langau: peak = 364.9, width = 272. SPM3 Langsur peak = 341.0, width = 253.3 Минимальное различие сигнала для различного в LG (Run140) LG (Run138) 25% различие сигнала для различного волокна (п Y-11 OK-72 S.G.(f) 1000 channels Y-11 PMT T-Theshold = 200 CKTN (new) T-Threshold = 300 S.G.(f) ToT ToT ounts 0 SiPM; mean:10; ms:5 0_SiPM; mean:20; ms:3 450 1_SIPM; mean:11; ms:5 cosmic rays 1_SIPM; mean:25; ms:4 2_SIPM; mean:10; ms:5 Std Dev 5.151 2_SiPM; mean:19; ms:3 Std Dev 3.392 350 250 300 200 2000 100

channels

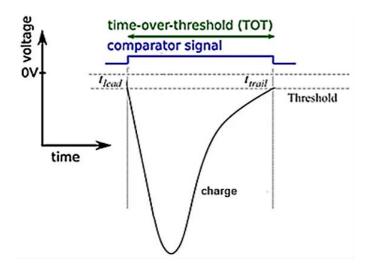

20

channels

5

channels

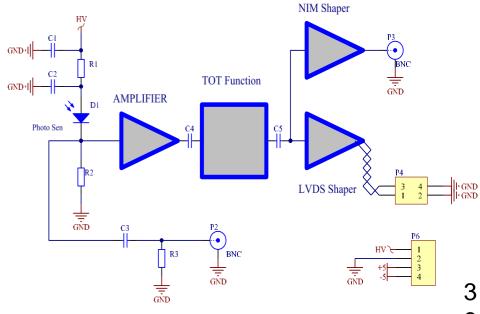
$\sqrt{s} = 10$ and 27 GeV



Z.Kurmanaliyev (JINR)

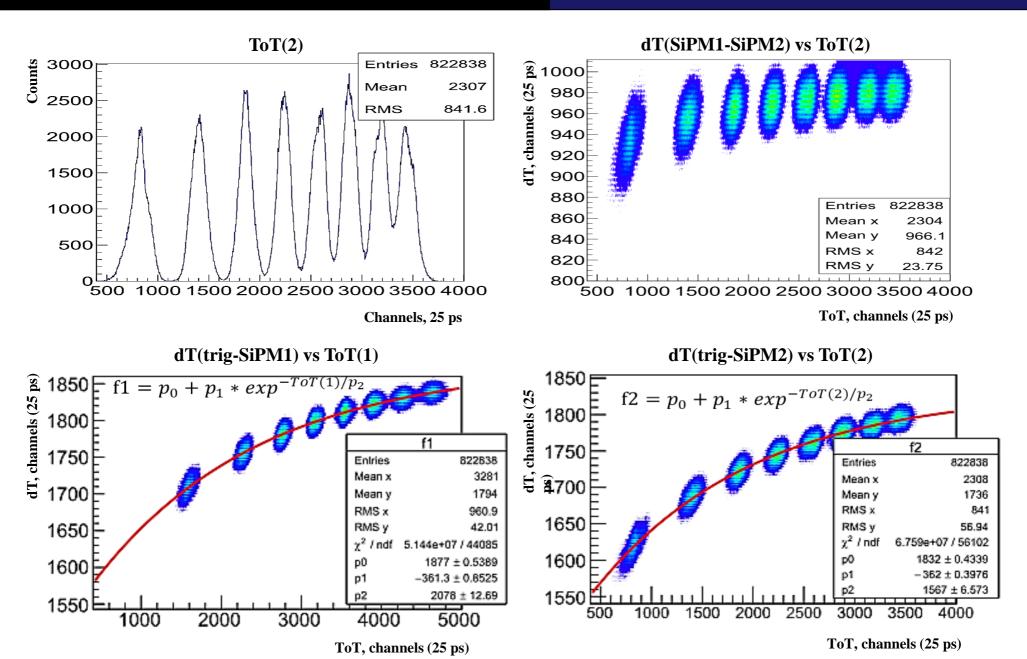
The result of this simulations shows that the in principle accepted for the internal part of this design works at the high luminosity of SPD.

Introduction The prototype The equipment Results


The Time-over-Threshold (ToT) method

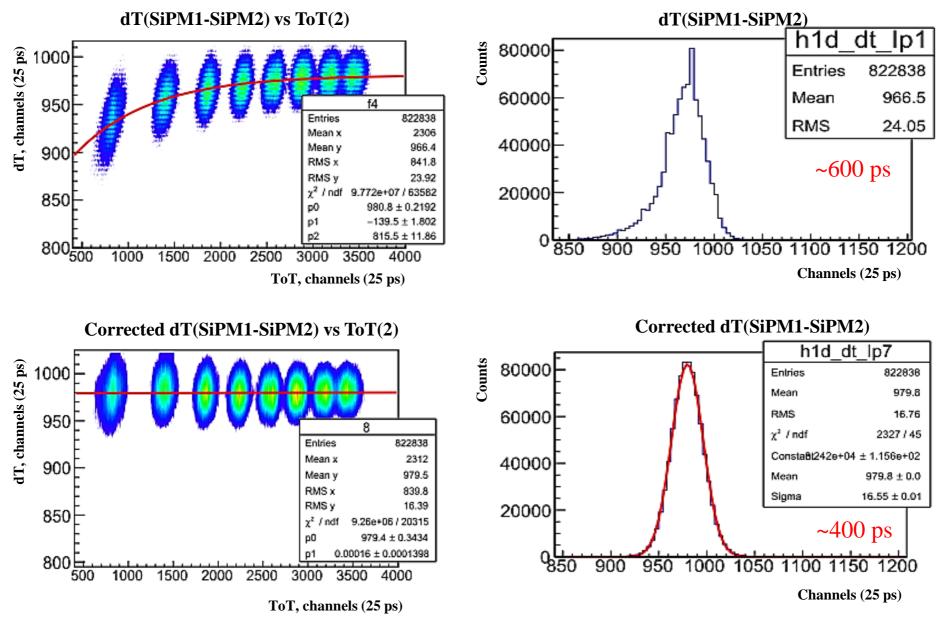
The ToT is a well-known method which allows to measure the energy deposited in the material.

Front-end electronics with ToT technique


Introduction The prototype

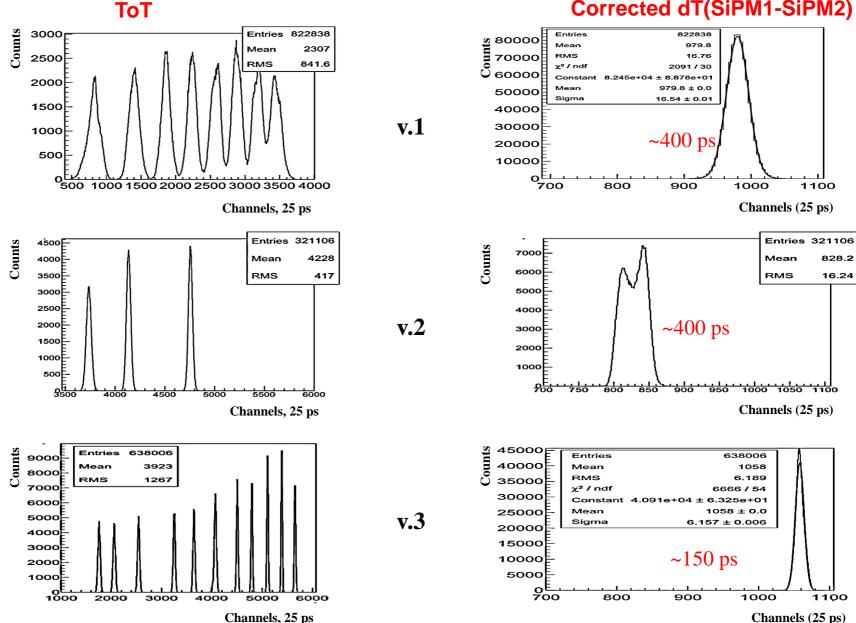
The equipment

Results


Extracting correction parameters FEE ToT (version №1)

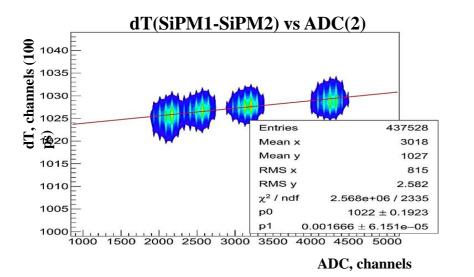
3

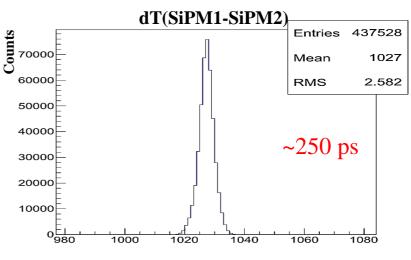
Introduction The prototype The equipment **Results**

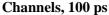

The time difference histogram FEE ToT (version №1)

A.V. Tishevskiy et al., J.Phys.Conf.Ser, V.1690, 012051 (2020)

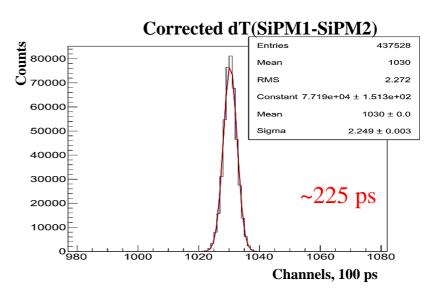
Introduction The prototype The equipment **Results**

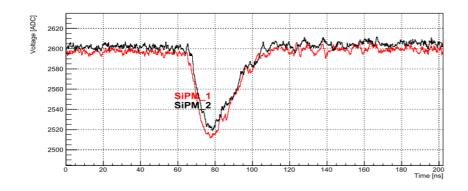

Comparison of FEE ToT versions

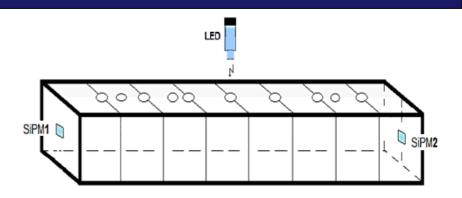



Corrected dT(SiPM1-SiPM2)

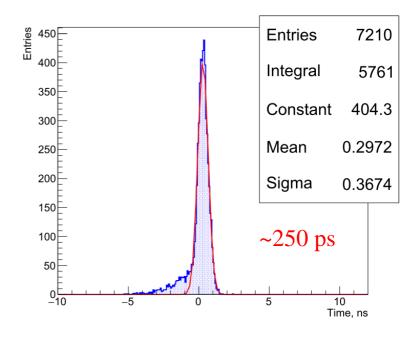
41


The time difference histogram for FEE DANSS

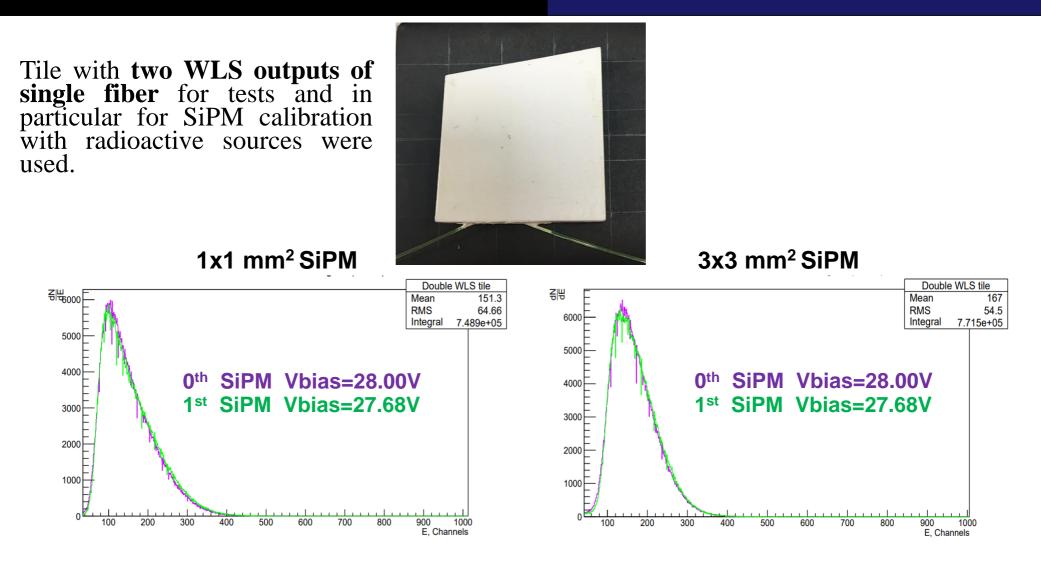

Phys.Atom.Nucl., DOI:10.1134/S1063778822090381 (2022)


CAEN digitizer DT5742 (16ch)

16+1 Channel 12 bit 5 GS/s Switched Capacitor Digitizer



based on the DRS4 a Switched Capacitor Array. This technology relies on a set of capacitors that continuously sample the analog input signals. As soon as the trigger is issued, capacitors are decoupled from the input signals with a time interval from each other that is the sampling period.



- Hamamatsu SiPM (S12572-010P)
- FEE of DANSS experiment

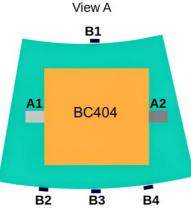

The first steps at the work with FERS and tiles tests

The amplitude histograms for both SiPM sizes with the chosen voltage are shown. This is not a bad result, but we preferred **another the way of calibration**.

Tests at Lab201- VBLHEP

Hexagonal granularity detector




CTEPP-UNAB FEE (Chile) + SiPM

Together with E.R. Rozas-Calderon (CTEPP-UNAB)

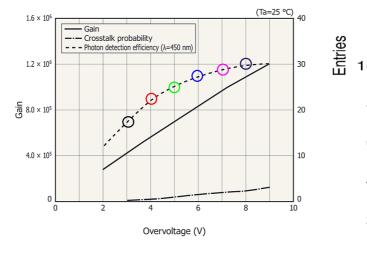
Tests at Lab201- VBLHEP

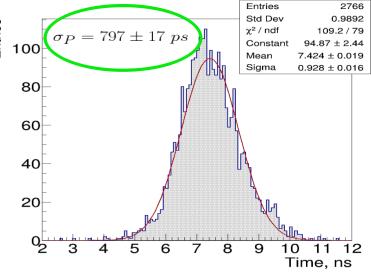
SAPHIR-UNAB and Cinvestav Teams

Light from prototype (BC404) is detected by four SiPM (B1-B4)

Different Vbias were explored (55.5, 56.5, 57.5, 58.5, 59.5, 60.5 V).

DAQ based on (16 ch) CAEN digitizer DT5742 was launched


Hamamatsu SiPM (S13360-3050CS, 3x3 mm², 50 µm/cell)


The prototype (in blue) was below the placed trigger counters (in yellow), which provided the start signal for data readout. Each trigger counter made of BC404 was а scintillator plate (10x10x2 cm³) and one Hamamatsu (H5783) PMT (A1, A2).

MILLENNIUM INSTITUTE FOR SUBATOMIC PHYSICS

SAPHIR

AT HIGH-ENERGY FRONTIER

