MC generator KaTie¹ for modeling of hard processes at the NICA

L. Alimov[†], A. Chernyshev^{†,2}, and V. Saleev^{†,*}

[†]Samara University ^{*}Joint Institute for Nuclear Research

VII SPD Collaboration Meeting

20–24 May, 2024 Almaty

¹A. Van Hameren, «KaTie: For parton–level event generation with k_T-dependent initial states», Comput.Phys.Commun 224 (2018); ²Email: aachernyshoff@gmail.com

Outline

1 Introduction

KaTieHard SPD processes in KaTie

4 KaTie + Pythia

Introduction	Factorization approaches	KaTie	KaTie + Pythia	Conclusions
•	00	00000	00	0

Introduction

Gluon probes at NICA SPD:

► Different charmonia states production: $\eta_c[1S]$, $\psi[1S]$ (J/ψ) , $\psi[2S]$.

- Description of hadronization of cc pair is based on phenomenological models: CSM, NRQCD, (1)CEM;
- Event generators:
 - ▶ Pythia 6.,8. ←-- parton showers;
 - MadGraph5_aMC@NLO_[Alwall et.al. '14] -- parton level + matching with parton showers;
 - ▶ ...

• Open charm production: D^0/\bar{D}^0 .

- ▶ Usually description of hadronization of $c \rightarrow D^0/\bar{D}^0$ is based on *fragmentation mechanism*;
- Calculations can be included in any pQCD event generator.

Prompt photons:

- Fully perturbative process at parton level;
- Event generators:

 - Sherpa[Gleisberg et.al. '09] +-- parton showers;
 - ► Jetphox_{[Catani et.al.} '02] ←-- parton level;
 - ► ...
- All of this generators use the *collinear factorization approximation* $\mu_F \sim p_T \gg \Lambda$.
- At the NICA kinematical range we plan to study TMD PDF's.

Introduction	Factorization approaches	KaTie	KaTie + Pythia	Conclusions
0	•0	00000	00	0

Factorization approaches³

 Y_2

 $q_2\uparrow$

 p_2

There are 3 conventional factorization approaches (in any case: $q_1^+ \gg q_1^-$ and $q_2^- \gg q_2^+$):

► Collinear Parton Model (CPM): $|\mathbf{q}_{T_i}| \ll \mu$

$$d\boldsymbol{\sigma}_{\text{CPM}} = \left[f(x_1, \mu^2) \times f(x_2, \mu^2) \right] \otimes d\hat{\boldsymbol{\sigma}}_{\text{CPM}} + O\left(\Lambda^2 / \mu^2 \right),$$

where $f(x_i, \mu^2)$ is integrated over $|\mathbf{q}_{T_i}|$ (collinear) PDF's $\leftarrow -DGLAP$;

Transverse Momentum Dependent (TMD)_[Collins '11]: $|\mathbf{q}_{T_i}| \ll \mu$

$$d\sigma_{\text{TMD}} = \left[F(x_1, \mathbf{q}_{T_1}, \mu^2, \mu_Y^2) \times F(x_2, \mathbf{q}_{T_2}, \mu^2, \mu_Y^2)\right] \delta^{(2)} \left(\mathbf{q}_{T_1} + \mathbf{q}_{T_2} - \mathbf{p}_T\right)$$
$$\otimes d\hat{\sigma}_{\text{CPM}} + O\left(\Lambda^2/\mu^2, \mathbf{p}_T^2/\mu^2\right),$$

where $F(x_i, \mathbf{q}_{T_i}, \mu^2, \mu_Y^2)$ is TMD PDF's $\leftarrow -$ Collins–Soper eq.; (See K. Shilyaev talk)

► High Energy Factorization (HEF) a.k.a. k_T -factorization_{[Gribov et.al.} '83; Catani et.al. '91]: $|\mathbf{q}_{T_i}| \sim \mu$ and $Y_i \gg 1$

$$d\sigma_{\text{HEF}} = \left[\Phi(x_1, \mathbf{q}_{T_1}, \mu^2) \times \Phi(x_2, \mathbf{q}_{T_2}, \mu^2)\right] \otimes d\hat{\sigma}_{\text{HEF}} + O\left(\Lambda^2/\mu^2, \mu^2/s\right),$$

where $\Phi(x_i, \mathbf{q}_{T_i}, \mu^2)$ is unintegrated PDF's (uPDF's) $\leftarrow -$ models. TMD \neq HEF

³We use Sudakov notation $\forall p : p = (p^+n_- + p^-n_+)/2 + p_T$, so $y(p) = (1/2)\ln(p^+/p^-)$.

Introduction	
0	

Factorization approaches

KaTie 00000

uPDF's

The uPDF's must include DGLAP evolution and small x effects:

PRA = Reggezied amplitudes + mKMRW uPDF's

We use uPDF's calculated in modified Kimber-Martin-Ryskin-Watt model

model_[Nefedov, Saleev '20; KMR '01; MRW '03]:

- mKMRW-MSTW20081090c1 -- LO collinear input;
- ▶ mKMRW-CT18NL0 ←-- NLO collinear input;
- Normalization condition holds exactly:

$$\int^{\mu^2} d\mathbf{q}_T^2 \, \Phi(x, \mathbf{q}_T, \mu^2) = x f(x, \mu^2), \quad \forall x, |\mathbf{q}_T|$$

In the region $|\mathbf{q}_T| \ll \mu_F$:

$$\Phi(x,\mathbf{q}_T,\mu^2) \simeq F(x,q_T,\mu_F^2,\mu_Y^2=\mu_F^2) \to \mathbf{PRA} \simeq \mathbf{TMD} + O\left(\frac{\mathbf{p}_T^2}{\mu^2}\right)$$

- ► A large number (~ 30) of different uPDF's are collected in TMDlib 2.x[Jung et.al. '21]:

 - ccfm-JH-2013-set2 <-- Monte-Carlo CCFM equation solution.

Introduction	Factorization approaches	KaTie	KaTie + Pythia	Conclusions
0	00	●0000	00	0

KaTie overview

The main aspects of KaTie[Hameren '18]:

(see manual for details)

- ► KaTie is a parton level event generator, i.e. without parton showers;
- On-shell initial states |**q**_T| ≪ µ → f(x,µ²)-standard tree-level CPM calculations:
 Collinear PDF sets from LHAPDF_{[Buckley et.al.} '14];
- ► Initial states can be off-shell $q^2 = -\mathbf{q}_T^2 \longrightarrow \Phi(x, \mathbf{q}_T, \mu^2)$ or $\Phi(x, \mathbf{q}_T)$ -HEF calculations;
 - uPDF's from TMDlib 2.x[Jung et.al. '21] or user grids with format:
 - $\ln(x) \quad \ln(|\mathbf{q}_T^2|) \quad x \Phi(x, |\mathbf{k}_T|) \qquad \text{or} \qquad \ln(x) \quad \ln(|\mathbf{q}_T^2|) \quad \ln(\mu^2) \quad x \Phi(x, |\mathbf{k}_T|, \mu)$
 - At $p_T \ll \mu$ KaTie may be used for TMD calculations with TMD PDF's, f.e. with Generalized PM PDF's:

$$F(x,|\mathbf{q}_T|,\boldsymbol{\mu}^2) = f(x,\boldsymbol{\mu}^2) \times G(|\mathbf{q}_T|), \qquad G(|\mathbf{q}_T|) = \frac{1}{\pi \langle \mathbf{q}_T^2 \rangle} \exp\left[-\frac{\mathbf{q}_T^2}{\langle \mathbf{q}_T^2 \rangle}\right]$$

- ► Fully numerical method for calculating gauge-invariant amplitudes up to order $O(e^n g^m)$, $n + m \le 4$ \leftarrow -- spinor amplitudes formalism and off-shell BFCW recurrence relations_[Hameren et.al. '13] numerically equivalent to the PRA amplitudes_[Nefedov, Saleev, Shipilova '13];
- ► A good tools for working with kinematics:
 - A FORTRAN like syntax in input file;
 - extra_cuts.f90 for FORTRAN code blocks;

► Output files in LHE format --- connection with multipurpose generators like Pythia

Introduction	Factorization approaches	KaTie	KaTie + Pythia	Conclusions
0	00	0000	00	0
Hard SPD processes in KaTie				

I. Charmonia production

Improved Color Evaporation Model (ICEM)[Ma and Vogt '16]:

$$\frac{d\sigma_{\boldsymbol{\Psi}[1S]}}{d^3p} \simeq \mathcal{F}^{\boldsymbol{\Psi}} \times \int_{M_{\boldsymbol{\Psi}}}^{2M_D} dM \, d^3 \mathbf{p}' \, \delta^{(3)} \left(\mathbf{p} - \frac{M_{\boldsymbol{\Psi}}}{M} \mathbf{p}'\right) \frac{d\sigma_{c\bar{c}}}{dM \, d^3p'}$$

▶ FACTOR \mathcal{F}^{Ψ} IS A *PROBABILITY OF HADRONIZATION*.

At NICA energies we obtained [A.C. and V. Saleev '22]:

$$R = \frac{\sigma_{q\bar{q} \to \psi[1S]X}}{\sigma_{gg \to \psi[1S]X} + \sigma_{q\bar{q} \to \psi[1S]X}} \simeq 30\%$$

KaTie scheme:

- i. Calculate $c\bar{c}$ production with mass cut:
 - cut source = {mass|1+2|} < 3.74D0
 cut source = {mass|1+2|} > 3.10D0
- ii. Set transverse momentum cut:

```
cut source = if
((3.10D0/{mass|1+2|}*{pT|1+2|}).gt.4.0D0)
REJECT
```


Introduction	Factorization approaches	KaTie	KaTie + Pythia	Conclusions
0	00	00000	00	0
Hard SPD processes in KaTie				

Predictions for $\psi[1S]$ **production at the SPD NICA**

- A. Karpishkov, «Double longitudinal spin asymmetries in P-wave charmonium production at the NICA»;
- ► K. Shilyaev, «Small- $p_T J/\psi$ production in the TMD parton model and NRQCD».

Introduction	Factorization approaches	KaTie	KaTie + Pythia	Conclusions
0	00	00000	00	0
Hard SPD processes in KaTie				

II. Open charm production (in this way we can also calculate fragmentation photons production)

Fragmentation approach:

$$\frac{d\sigma_D}{d^2 p_T^D dy^D} = \mathcal{D}(z) \otimes \frac{d\sigma_{c\bar{c}}}{d^2 p_T^D dy^c}, \quad z > z_{\text{cut}} = \frac{M_D}{p_c^0 + |\mathbf{p}_c|},$$

we use Peterson FF:

$$\mathcal{D}(z) = \mathcal{N} \ \frac{z(1-z)^2}{[(1-z)^2 + \varepsilon z]^2}, \quad \int_0^1 dz \ \mathcal{D}_{c \to D}(z) = P_{c \to D},$$

with $\varepsilon = 0.06$, probabilities $P_{c \to D}$ from [Gladilin '99].

KaTie scheme:

- i. Calculate production of *cc̄* pair;
- ii. Generate $z \leftarrow \mathcal{D}(z)$ or reweight events with $z \leftarrow \frac{1}{1-z_{\text{cut}}}$: $W_D = W_c \times P(c \rightarrow D) \times \mathcal{D}(z) \times (1-z_{\text{cut}});$
- iii. Apply collinear massive fragmentation scheme:

$$\frac{\mathbf{p}_c}{|\mathbf{p}_c|} = \frac{\mathbf{p}_D}{|\mathbf{p}_D|}, \qquad z = \frac{p_D^0 + |\mathbf{p}_D|}{p_c^0 + |\mathbf{p}_c|}.$$

Predictions for D⁰ production at the SPD NICA

Also see

talk by A. Karpishkov at International Conefernce on Quantum Filed Theory, 21.07.2022, URL.

Introduction	Factorization approaches	KaTie	KaTie + Pythia	Conclusions
0	00	0000	00	0
Hard SPD processes in KaTie				

NLO* CPM calculations with KaTie

LO CPM 2 \rightarrow 2: processes of order $O(\alpha_s^2)$ are finite:

 $\begin{array}{l} g+g\rightarrow c+\bar{c},\\ q+\bar{q}\rightarrow c+\bar{c}. \end{array}$

NLO^{*} CPM 2 \rightarrow 3: first α_S real correction of order $O(\alpha_S^3)$:

$$\begin{array}{l} g+g \to c+\bar{c}+g \ (k'),\\ q+\bar{q} \to c+\bar{c}+g \ (k'),\\ g+q \to c+\bar{c}+q \ (k') \end{array} \right\} \quad \text{infrared diverge } |\mathbf{k}_T'| \to 0$$

Phenomenological cutoff at the lower limit and suppresion function:

$$\sigma_{ij \to c\bar{c}g}(\lambda) \sim \int_0^\infty d|\mathbf{k}_T'| F_{\sup}(|\mathbf{k}_T'|;\lambda) \times \dots, \qquad F_{\sup}(|\mathbf{k}_T'|;\lambda) = \frac{|\mathbf{k}_T'|^4}{(|\mathbf{k}_T'|^2 + \lambda^2)^2}$$

- ► Suitable for describing data on charmonia production_[Cheung, Vogt '21];
- ► Also can be applied to D mesons production[Maciula, Szczurek '19].

Introduction	Factorization approaches	KaTie	KaTie + Pythia	Conclusions
0	00	00000	•0	0

KaTie with parton showers from Pythia 8

Pythia settings:

PartonLevel:ISR = on
PartonLevel:FSR = on
HadronLevel:Hadronize = on
HadronLevel:Decay = on

BeamRemnants:primordialKT = off

Introduction	Factorization approaches	KaTie	KaTie + Pythia	Conclusions
0	00	00000	0●	0

KaTie with parton showers from Pythia 8

Pythia settings:

PartonLevel:ISR = on
PartonLevel:FSR = on
HadronLevel:Hadronize = on
HadronLevel:Decay = on

BeamRemnants:primordialKT = off

Introduction	Factorization approaches	KaTie	KaTie + Pythia	Conclusions
0	00	00000	00	•

Conclusions

- We have made a brief review of KaTie event generator;
- ▶ We have developed a scheme for calculating heavy quarkonia and *D* mesons production using KaTie;
- At the $p_T \ll \mu$ KaTie may be used for calculations in the TMD factorization;
- For the intermediate region $p_T \sim \mu$ we may use the PRA, which takes into account power corrections $O(\mathbf{p}_T^2/\mu^2)$;
- ► KaTie can be a powerful tool for calculating hard processes even at NICA energies.

KaTie can be found at Bitbucket/hameren/katie

The efficiency of KaTie for calculating different hard processes at high energies was demonstrated in [A. van. Hameren et.al. '18–23] and some of our works [A. Chernyshev and V. Saleev '22–24].

A. Chernyshev and V. Saleev would like to thank A. van Hameren for helpful discussions on KaTie program and H. Jung for help in TMDlib 2.x installation.

Thank you for your attention!