

FARICH simulation and reconstruction

Artem Ivanov JINR, Dubna

SPD Collaboration Meeting 24.05.2024

Focusing Aerogel RICH detector in SPD

FARICH detector: basic principles

100

center, mm

 γ -Y

Principle of detector operation

Accumulated *xy* distribution of hits

X-X center, mm

Particle ID in SPD

4

FARICH in GEANT4

Based on stand-alone GEANT4 based simulation program from team Budker Institute of Nuclear Physics, Novosibirsk (*Thanks to A.Yu. Barnyakov, V.S. Bobrovnikov*)

FARICH in SpdRoot

- 1) Description of geometry/material based on TDR
- 2) Setting of optical properties in Geant4
- 3) FARICH reconstruction

FARICH in SpdRoot

- 1) Description of geometry/material based on TDR
- 2) Setting of optical properties in Geant4
- 3) FARICH reconstruction

FARICH in SpdRoot: geometry

Aerogel geometry/material

Material:

$$Si 0_2 - 97\%$$

 $H_2 0 - 0.03\%$
 $density = \frac{(n^2 - 1)}{0.438}, [cm^3/g]$

n(400)=1.0370,	L=7.00 mm
n(400)=1.0410,	L=10.00 mm
n(400)=1.0430,	L=9.00 mm
n(400)=1.0470,	L=10.00 mm

Air geometry/material

Material: air

Photon detector geometry/material

FARICH geometry

FARICH in SpdRoot

- 1) Description of geometry/material based on TDR
- 2) Setting of optical properties in Geant4
- 3) FARICH reconstruction

Settings Geant

SpdRoot (Geant v10.5.1)

spdroot/gconfig/g4config.C

spdroot/gconfig/g4config.in

/process/optical/cerenkov/setMaxPhotons 300 /process/optical/cerenkov/setMaxBetaChange 10.0 /process/optical/cerenkov/setTrackSecondariesFirst true

/process/optical/processActivation Cerenkov true
/process/optical/processActivation Scintillation false
/process/optical/processActivation OpAbsorption false
/process/optical/processActivation OpMieHG false
/process/optical/processActivation OpBoundary true

Skin surface

gMC->DefineOpSurface("surface_pmt", kUnified, kDielectric_metal, kPolished, 1.3);

Currently, only Cherenkov photons from the ring are being studied.

Optical properties of aerogel

Optical properties of photon detector

MCP PMT N6021

wavelength, nm

Cherenkov cone in FARICH

FARICH in SpdRoot

- 1) Description of geometry/material based on TDR
- 2) Setting of optical properties in Geant4
- 3) FARICH reconstruction

FARICH simulation

FARICH reconstruction

- 1) Reconstruction by ellipse
- 2) Reconstruction by dependence $\theta_c vs \phi_c$
- 3) Reconstruction using Likelihoods
- 4) Reconstruction using ML
 - (Fedor Ratnikov, Higher School of Economics)

FARICH reconstruction: by ellipse

$$\tan(\theta_c) = \frac{b^2}{a * L}$$

FARICH reconstruction: by ellipse

"Методы оценки параметров колец черенковского излучения в детекторе RICH для эксперимента CBM" А. С. Айриян , В. В. Иванов , С. А. Лебедев , Г. А. Ососков , Н. И. Чернов

Equation of ellipse
$$d_1 = \sqrt{(x - x_{F1})^2 + (y - y_{F1})^2}$$

 $d_1 + d_2 = 2a$
 $d_2 = \sqrt{(x - x_{F2})^2 + (y - y_{F2})^2}$

Fitting by MINUIT

Fitting parameters

$$x_{F1}, x_{F2}, y_{F1}, y_{F2}, a$$

$$x_{c} = (x_{F1} + x_{F2})/2$$

$$y_{c} = (y_{F1} + y_{F2})/2$$

$$b = \sqrt{a^{2} - \sqrt{(x_{F1} - x_{F2})^{2} + (y_{F1} - y_{F2})^{2}}}$$

$$\phi = \arctan\left(\frac{y_{F1} - y_{F2}}{x_{F1} - x_{F2}}\right)$$

Results of fit by ellipse

θ_c vs p_{rc}

FARICH reconstruction: by dependence $\theta_c vs \phi_c$

"FARICH simulation", Viktor Bobrovnikov, 29 September 2020

- The dependence of polar angle of cherenkov photons θ_c from azimuth angle φ_c are used in this reconstruction
- The values θ_c and φ_c are defined in primary particle coordinate system and, therefore, to define them, it is necessary to translate them into laboratory coordinate system in which the primary particle moves (position of primary particle in laboratory coordinate system is determined by its initial position and angles θ_t and φ_t)
- The dependence of θ_c on φ_c can be expressed as

$$\theta_c(\varphi_c|\beta, n, \theta_t) = \arccos\left(\frac{1}{n\beta}\right) + \arccos\left(n\left(1 - (\vec{n}_0\vec{n}_\gamma)^2\right) + (\vec{n}_0\vec{n}_\gamma)\sqrt{1 - n^2\left(1 - (\vec{n}_0\vec{n}_\gamma)^2\right)}\right)$$

- n average value refraction index of radiator
- $(\vec{n}_0 \vec{n}_\gamma) = \cos \theta_t / (n\beta) + \cos \varphi_c \sin \theta_t \sqrt{1 1/(n\beta)^2}$
- \vec{n}_0 and \vec{n}_γ vectors of the radiator and Cherenkov cone normal, respectively

FARICH reconstruction: by dependence $\theta_c vs \phi_c$

Examples of using function θ_c ($\phi_c \mid \beta$, n, θ_t) to fit data

n=1.042

θ_c vs p_{rc}

Separation power

Conclusion

- FARICH is implemented to SpdRoot. Stand-alone GEANT4 based simulation program from Novosibirsk team is taken as the starting point.
- Two methods of reconstruction are added
- Work is ongoing

Backup slides

Efficiency

