TSSA of charged hadrons in pp @ 13 GeV in the SPD

Elena Zemlyanichkina (JINR)

VII SPD Collaboration Meeting Almaty, 24 May 2024

• $A_N^{\pi^+}$, $A_N^{K^+}$, and A_N^p are positive $\Rightarrow A_N^{h^+}$ should be positive $Q_{X_{F^{-1}}} > 0.2$

• More than 85% of h^- at $p_T > 0.5$ GeV/c are $\pi^- \Rightarrow A_N^{h^-}$ could be negative @ $x_F > 0.2$ • TSSA $A_N^{h^+}$ and $A_N^{h^-}$ are good tests for polarised measurements with SPD

Motivation

2

30

Generation and Reconstruction

- SPDRoot v. 4.1.6;
- ITS: I layer Micromegas-based Central Tracker;
- TS: STRAW detector
- Beam: Event vertex (0,0,0), 30 cm Gaussian z-smearing

• 10 milions soft QCD (w/o elastic) events with Pythia 8 in $pp @ \sqrt{s} = 13 GeV$;

 p_T , GeV/c

 p_T , GeV/c

Extraction of TSSA A_N

$\bullet p^{\uparrow} + p \to \pi^{\pm} + X$

- The cross section of hadron production in polarised $p^{\uparrow} + p$ collisions is modified in azimuth: $\frac{d\sigma}{d\phi} = \frac{d\sigma}{d\phi_0} (1 + P \cdot A_N \cdot \cos \phi), \text{ where } P \cdot A_N \cdot \cos \phi \text{ is}$ azimuthal cosine modulation
- $N_{\pi^{\pm}}(\phi) = A(1 + B\cos\phi)$: yield of π^{\pm} ; $A_N = \frac{B}{P}$,
 - P: Beam polarisation, $P \sim 0.7$ was assumed
- The spin dependent π^{\pm} yields for each bin are extracted in different x_F sub-ranges for each ϕ bin

Results: $A_N^{\pi^{\pm}}$ @ $p_T > 0.5$ GeV/c, $P_{beam} = 0.7$ √s=13 GeV $A_N(x_F, p_T)$ 0.8 0.6 0.4 0.2 -0. -0.6 Low statistics -0.8 -0.8 -0.6 -0.4 -0.2 0.2 0.6 0.4 8.0 0 \mathbf{X}_{F}

• We can not identify $\pi^+ @ p_T > 0.5 \ GeV/c$ using STRAW detector alone, but • Since $A_N^{\pi^+}$, $A_N^{K^+}$, and A_N^p are positive $\Rightarrow A_N^{h^+}$ should be positive @ $x_F > 0.2$ • More than 85% of h^- at $p_T > 0.5$ GeV/c are $\pi^- \Rightarrow A_N^{h^-}$ could be negative @ $x_F > 0.2$

10

Summary

Hadron composition

Charged Hadrons: 2D distributions

The $(p-\theta)$ phase space of positively charged particles

The $(p-\theta)$ phase space of positively charged particles

Reconstructed in SPDRoot

pure Pythia8

14

Generation and Reconstruction

• 10 millions soft QCD (w/o elastic) events with Pythia 8 in pp @ 13 GeV;

SPDRoot v. 4.1.6; ITS: I layer Micromegas-based Central Tracker;

Beam: gRandom->SetSeed(seed);

primGen->SmearGausVertexXY(kTRUE); //uniform smearing is done from -width/2 to width/2

primGen->SetTarget(0., 30.);//Z0,Zwidth, 30 cm std. dev. primGen->SmearGausVertexZ(kTRUE); //uniform smearing is done from -width/2 to width/2

- primGen->SetBeam(0., 0., 0.025, 0.025);//X0,Y0,Xwidth,Ywidth : 250 microns std. dev.
- //Important : for uniform smearing or SmearVertexXY(kTRUE), give twice the width you want
- //for Gaussian smearing or SmearGausVertexXY(kTRUE), give sigma or standard deviation you want
- //Important : for uniform smearing or SmearVertexZ(kTRUE), give twice the width you want
- //for Gaussian smearing or SmearGausVertexZ(kTRUE), give sigma or standard deviation you want

Micromegas-based Central Tracker description

```
void CustomMvd(Int_t geo_type)
```

```
if (geo_type < 1) return;</pre>
```

```
SpdMvdGeoMapper* mapper = SpdMvdGeoMapper::Instance();
if (geo_type == 1) { mapper->SetGeoType(1); return; }
if (geo_type == 2) { mapper->SetGeoType(2); return; }
mapper->SetGeoType(3);
mapper->ClearGeometry();
```

// here we can redefine active material (by default = "argon").
//mapper->SetActiveMaterial("copper");

```
// BUILD LAYERS
```

```
Int_t l0, l1;
l0 = mapper->DefineLayer(5.0,80.0);
mapper->SetLayerActivity(l0,true);
mapper->AddSublayer(l0,0.01750,"FR4");
mapper->AddSublayer(l0,0.00190,"copper");
mapper->AddSublayer(l0,0.01350,"kapton2");
mapper->AddSublayer(l0,0.40000,"argon");
mapper->AddSublayer(l0,0.00055,"copper");
mapper->AddSublayer(l0,0.02400,"kapton2");
```

```
l1 = mapper->DefineLayerCopy(l0,5.5);
l1 = mapper->DefineLayerCopy(l0,6.0);
```

• CustomMvd(3); -1 layer

track_fitter->SetFitterMaxIterations(20);
 — convergency and PV RC

Azimuthal cosine modulations

