

Natalia Rogacheva

LHEP, JINR, Dubna

SPD collaboration meeting 20-24 May 2024

N. Rogacheva (SPD collaboration meeting)

Analysis of K_{S}^{0} production

24 May 2024 1 / 15

→ ∃ →

Motivation of study

The ultimate goal is to measure the transverse single-spin asymmetries (SSA) A_N for K_S^0 which are related to

- transversity PDF
- Sivers PDF
- Collins fragmentation function

Measurement of A_N for K_S^0 could help us to study the orbital motion of strange quark inside proton.

Spin Physics Detector and event sample for the K_S^0 analysis

Secondary vertex (V^0) are reconstructed in the detectors: Vertex detector and Straw tracker.

Event sample Generation: Pythia 8, (p+p) at $\sqrt{5}$ =27 GeV, SoftQCD(MB). 4 000 000 events (1 sec of data taking).

A D N A B N A B N A B N

24 May 2024 3 / 15

Selection criteria

PV and V0 selection:

- **1** The primary vertex coordinates has a gaussian smearing with $\sigma_z = 30$ cm, $\sigma_x = \sigma_y = 0.1$ cm,
- ② Daughters = $K^0(-211, 211), \Lambda(2212, -211), \overline{\Lambda}(-2212, 211);$ Bg = (321, -321), (-321, 211), (321, -211).

For track selection: minimum Its hits = 0; total minimum hits = 3.

- The track candidates were required to be well-fitted and to have a track fit χ^2 over the number of degrees of freedom less than 6 ($\chi^2/NDF < 6$).
- Solution Minimum χ^2_{V0} track to PV is less than 2.
- **6** Track extrapolation χ^2 is more than 10.
- Track fit is converged.

Kinematical cuts:

- **(**) $\theta_{coll} < 0.03$ rad for K^0 . This cut selects V^0 events the momentum looking at the PV.
- 2 $Dist = \sqrt{(x_{SV} x_{PV})^2 + (y_{SV} y_{PV})^2 + (z_{SV} z_{PV})^2}$. This cut selects V^0 which decay close to PV. Dist > 0.7 cm for K_S^0 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

New cuts is helicity angle for selections K_S^0

Thanks to Mihai Dima.

Strange Particle Production in Hadronic Z⁰ Decays

by Kenneth George Baird III

For the K_s^0 analysis, the $\Lambda^0/\bar{\Lambda}^0$ background causes an asymmetric "bump" in the $\pi\pi$ -invariant mass distribution, as seen in Figure 6.2, which complicated the fitting procedure. A cut on the "helicity angle" θ^* , defined as the angle between the π^+ momentum vector in the K_s^0 rest frame and the K_s^0 flight direction, was used to remove the Λ^0 and $\bar{\Lambda}^0$ contamination (Fig. 6.3). K_s^0 candidates were required to have $|cos\theta^*| \leq 0.8$, which removed 20% of the K_s^0 signal. This cut also removes the γ -conversion background.

Helicity angle ($|\cos\theta^*| \leq 0.8$) for K_S^0 at SPD.

Invariant mass of K_S^0 after all cuts

The shape of the K_0^0 signal was parametrized by double Gaussian and background was parametrized by the second order polynomial.

The selected V^0 candidates are plated in (p, θ), (x_F , p_T) and (η , p_T) phase space Pure Pythia 8 (true), K_S^0 :

Reconstruction data (RD):

N. Rogacheva (SPD collaboration meeting)

Analysis of K_{S}^{0} production

24 May 2024 7 / 15

Binning

The choice of the binning scheme is obtained from distribution of K^0 simulated in Pythia 8. It was done to have the similar number of K_S^0 in bins $(n_{bin}^{\theta} = 4, n_{bin}^{p} = 10)$.

Distributions of the K_S^0 candidates with all cuts

Factorization of the MC correction (1st step)

N. Rogacheva (SPD collaboration meeting)

Analysis of K_{S}^{0} production

24 May 2024 10 / 15

Feed down correction in PV and outside PV (2nd step)

Factorization of the MC correction

 $C1 = \frac{N(3hits)}{N(K_{true}^{0}(all))} \qquad \dots \qquad C8 = \frac{N(|\cos\theta^{*}| \leq 0.7)}{N(Dist > 0.7)}$

N. Rogacheva (SPD collaboration meeting)

24 May 2024 12 / 15

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● のへ⊙

Extraction of A_N for selections K_S^0

Thanks to Katherin Shtejer.

 $p^{\uparrow} + p \rightarrow \pi^{0} + X \qquad \phi = 2\pi$ The cross section of hadron production in
polarized $p^{\uparrow} + p$ collisions, is modified in azimuth. $\frac{d\sigma}{d\phi} = \frac{d\sigma}{d\phi_0} (1 + P \cdot A_N \cdot \cos \phi)$ Azimuthal cosine
modulation $N_{\pi^0} (\phi) = A(1 + B \cos \phi)$ $A_N = \frac{B}{P}$ $N_{\pi^0} (\phi)$: Yield of π^0 P: Beam polarization $P \approx 0.7$ was assumed

- The spin dependent K_S^0 yields for each bin are extracted from the invariant mass spectra in different x_F sub-ranges for each ϕ bin.
- The invariant mass was fitted with a second order polynomial function for the background and a normalized Gaussian distribution representing the signal peak.

N. Rogacheva (SPD collaboration meeting)

Analysis of $K_{\rm S}^0$ production

24 May 2024 13 / 15

Extraction of A_N for selections K_S^0

Conclusion

- Analysis of the K_S^0 reconstruction efficiency was performed.
- MC correction was factorized (include feed down correction in PV and outside PV).
- A_N for K_S^0 can be one of the first results of polarised measurements at SPD.

Thank you for your attention.