
Workload Management System for
 SPD Online filter

VII SPD Collaboration Meeting. 23.05.2024
Nikita Greben, MLIT

SPD Online Filter as a middleware software

❖ Data management system

➢ Data lifecycle support (data catalog, consistency

check, cleanup, storage);

❖ Workflow Management System:

➢ Define and execute processing chains by generating

the required number of computational tasks;

❖ Workload management system:

➢ Create the required number of jobs to perform the task;

➢ Dispatch jobs to working nodes via pilots;

➢ Control job execution;

➢ Pilot control (identification of "dead" pilots);

➢ Efficient resource management;
2

«SPD OnLine filter» – hardware and software complex

providing multi-stage high-throughput processing and filtering

of data for SPD detector.

Architecture of SPD Online Filter

High-throughput computing

➢ HTC is defined as a type of computing that simultaneously

executes numerous simple and computationally

independent jobs to perform a data processing task.

➢ Since each data element can be processed

simultaneously, this can be applied to data aggregated by

a data acquisition system (DAQ).

➢ To ensure efficient utilization of computational resources,

data processing should be multi-stage:

○ One stage of processing → task

○ Processing a block of data (file) → job

3Simplified multi-staged scheme

Task and job definition

4

➢ A task is a workload unit responsible for processing a block of homogeneous data - dataset.

➢ A processing request is a set of input data, which may consist of multiple files, and a handler.

➢ The completion criterion of the task is the processing of the data block.

➢ The Workflow Management System is responsible for defining and executing workflows, as well as

defining a processing request, which is a task.

➢ A job (payload) is a unit of work that processes a unit of data (file).

➢ The unit responsible for processing a single file in terms of workload is called a job.

➢ The Workload Management System (WMS) is responsible for generating jobs, sending them to

compute nodes, and executing them.

Workload management system requirements

❖ Task registration: formalized task description,

including job options and required metadata

registration.

❖ Jobs definition: generation of required number of

jobs to perform task by controlled loading of

available computing resources.

❖ Jobs execution management: continuous job state

monitoring by communication with pilot, job retries

in case of failures, job execution termination.

Forming jobs based on dataset contents, one file per one job

5

The key requirement - systems must meet the
high-throughput paradigm.

❖ task-manager – implements both external and

internal REST APIs. Responsible for registering tasks

for processing, cancelling tasks, reporting on current

output files and tasks in the system.

❖ task-executor – responsible for forming jobs in the

system by dataset contents.

❖ job-manager – accountable for storing jobs and files

metadata, as well as providing a REST API for the

executed jobs.

❖ job-executor – responsible for distribution of jobs to

pilot applications, updating the status of jobs,

registering output files and closing the dataset.

❖ pilot – responsible for running jobs on compute

nodes, organizing their execution, and

communicating various information about their

progress and status.

Architecture and functionality of Workload Management System

SPD Workload Management System architecture 6

Interaction with the Workflow Management System

7

➢ Registration of a task for processing

○ WfMS passes the task description into message

queue

➢ Summary of current intermediate properties of jobs/files

in the system

○ Aggregated information about the status of each

job/file for further decision making

➢ Task cancellation

○ Based on the decision made on the WfMS (too

many errors occuring) or operator side

➢ Change priority of a task

○ Control management

WMS

Interaction with the Data Management System

8

Within a Workload Management System, there are several scenarios

for interacting with the data management system:

➢ Obtain information about dataset contents for forming jobs from

DSM-Manager (Data Catalog REST API)

➢ Register files in datasets after executing payload on compute

node – DSM-Register (Data Registration)

➢ Close dataset after cancellation or sufficient number of

successfully processed files – DSM-Register
Architecture of Data Management

Routing Key Msg Algo

dataset.close Dataset info
• Dataset UID
• File check list (file

names)

Request the registered files in the dataset. If
they match the checklist, set the status to
CLOSED. Otherwise, return the messages
back to the queue for deferred execution.

dataset.upload Dataset UID Marking dataset for uploading
(TO_UPLOAD)

dataset.delete Dataset UID Marking dataset for deletion (TO_DELETE)

Signature and algorithm of message receiving gateways for the dsm-register service

RDBMS - PostgreSQL 16

Tables:

❖ alembic_version – managing and tracking
database schema changes

❖ file_dat – a directory specifying the output files
and logs generated on the pilot

❖ job_dat – jobs currently being processed in the
system

❖ task_dat – current tasks in the system

Extra mechanisms:

❖ Indexes – on filter fields for optimization of
operations

❖ Procedures – task and job generation for test
purposes

❖ Triggers – rank update logic
❖ Decomposition – single database per

microservice

Database design

9

ER Diagram of the Workload
Management System Database

Internal design of Pilot Agent

10

➢ The agent application is deployed on a compute

node and consists of the following two

components: a UNIX daemon and the pilot itself.

➢ The UNIX daemon's objective is to run the next

pilot by downloading an up-to-date version from

the repository.

➢ Pilot itself is a multi-threaded Python application

responsible for

○ Receiving and validating jobs from the

message broker.

○ Downloading input files for the payload

stage and uploading the result files to the

output storage.

○ Launching a subprocess to execute a

payload (decoding DAQ format, track

recognition algorithm, etc.)

○ Keeping the upstream system informed of

the current status of the payload and the

pilot itself via heartbeat/status updates

during each phase of pilot execution.

➢ Compute nodes differ only in the availability of specialized co-processors

(GPUs) and are assigned to the appropriate message broker based on the

computational needs of the job.

➢ Regardless of the presence of an error, when the pilot finishes, the UNIX

daemon launches a new instance of the pilot.

Interaction with the Pilot Agent

11

Two communication channels:

● HTTP (aiohttp)

● AMQP (message broker - RabbitMQ)

Two types of nodes:

● Multi-CPU

● Multi-CPU + GPU

❖ Pilot has a series of prepossessing stages before running a job itself:
a. start logging
b. read configuration
c. getting a job from message queue
d. validation

❖ After those steps the Pilot launches another thread where it does
a. environment setup script
b. copying files locally from the input storage
c. starts execution of a job itself in a separate sub-process
d. analysis of the result of a job
e. copying output data and logs to storage
f. sends regular messages to WMS

g. cleaning up the local environment
❖ Pilot sends status-update message at any point of internal changes
❖ WMS may terminate the job if the corresponding task is cancelled or if an

error occurs.

➢ A detailed job status model has been described
➢ Error codes introduced
➢ Pilot ran through all major stages of the job execution (DAG)
➢ Pilot at this stage runs a script that does a basic hash compute
➢ Further debugging needed

Tech stack

12

Common
➢ Python 3.12
➢ docker compose - running

multi-container applications

Frameworks
➢ aio-pika (RabbitMQ + asyncio) -

asynchronous API with RabbitMQ
➢ FastAPI + uvicorn

DB
➢ PostgreSQL - RDBMS
➢ Alembic (Migration)
➢ SQLAlchemy 2.0
➢ asyncpg - Postgres DBAPI

Extra
➢ aiohttp - asynchronous HTTP

client/server framework
➢ Pydantic - validate and serialize data

schemes
➢ pytest-asyncio - test purposes

Key results

Design of services:

➢ Implemented a mechanism for declaring the data model in the database based on ORM and migration
scripts;

➢ Designed and implemented a list of required REST API methods and their signatures;

➢ Configured CD tools (build and deployment) on the JINR LIT infrastructure;

➢ Designed inter-service interaction scenarios;

➢ Redesigned Pilot internal architecture;

Prototype of services:

➢ Run through all job execution state model, debugging interactions with the pilot;

➢ Job management subsystem is the most advanced: most interactions implemented and being tested,
job-watchdog microservice is being developed;

➢ Pilot is in active stage of development (Leonid Romanychev SPbU).

13

Next major steps

14

● Task processing
○ Implementing task-partitioning algorithm.

○ Closing datasets for DSM.

○ Execute the entire workchain set up on the level of WfMS.
● Logging

○ Currently, each microservice's logs are mapped to the host
via a shared file system between Docker and the host.

○ Ideally – ELK (Elastic-Logstash-Kibana) stack to build a log
analysis platform.

● Configuration
○ Consider to centralize some of the shared configurations

across multiple services.
● Documentation

○ Given the increasing complexity of the internal logic of the
software, it is necessary to document each step of the
development, for example: job state model could grow in
complexity.

● Metrics and monitoring
○ For example, service query-per-second, API

responsiveness, service latency etc.
○ InfluxDB, Prometheus, Graphana. Job execution tree

Prototyping Job-Manager (API)

15

● The chosen framework for building the service is FastAPI + Uvicorn asynchronous framework
● A basic set of CRUD operations on data in the form of REST API is developed.
● API description autogeneration according to OpenAPI 3.0 specification is implemented (available in Swagger UI at <server address>/docs)

Swagger UI with job-manager service API description Example of a service call to post a new job

Prototyping Job-Executor - Pilot (RabbitMQ queues)

16

● RabbitMQ is selected as the message broker
● Queues are defined using the declarative notation of the aio-pika tool
● At the start of the application their unfolding is performed

Jobs could be delivered manually
Configured RabbitMQ queues

Summary

Plans for the year:

● Defining and implementing obvious data processing pipelines;

● Debugging basic algorithms and external interfaces;

● Work out integration with application software and test on SPD-DAQ modelled data.

17

We have designed the components of the Workload Management System, taking into account the
characteristics and internal requirements of both the WFMS and DSM systems.

Our goal is to complete the prototyping phase and fully integrate with the application layer components
of the «SPD On-Line Filter» platform.

Current plans:

● Run a simple data flow: create dataset, define a task, propagate through WMS, register files,
close dataset

● Deploy pilot on multiple machines

Thank you for your attention!

18

Dataflow and data processing concept

Main data streams:

❖ SPD DAQs, after dividing sensor signals into

time blocks, send data to the SPD Online

Filter input buffer as files of a consistent size.

❖ The workflow management system creates

and deletes intermediate and final data sets

❖ The workload management system

“populates” the data sets with information

about the resulting files

❖ At each stage of data processing, pilots will

read and write files to storage and create

secondary data

19

Following tools are used
❖ Poetry

➢ Particularly good at handling complex
dependency trees and ensuring that the different
modules can integrate with each other without
version conflicts

❖ Python packages
➢ separate GitLab repositories for each package
➢ Poetry for packaging and dependency

management
❖ Gitlab

➢ Access Tokens used as kind of credentials for
scripts and other tools

➢ CI/CD for automate testing and building

Modularization: deploying and using own packages

20

wms-schema is a package that contains a scheme for task and job data that
is used in almost every other service

R&D

21

● Jobs scheduling (algo)

● Partitioning of a task
○ Imagine a multitasking operating system.
○ Each dataset represents a process, and each record

within a dataset is like a thread within that process.
○ The algorithm acts as the operating system's

scheduler, allocating processing time to threads
based on their priority.

● Chunk size and rank/priority of a job as a basic control
unit:

Proposed task-partitioning algorithm

