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Motivation

Partons - products of hadron-hadron hard scattering are not accessible for direct measurement

= We can get an information about these particles from the final state products resulting from

harmonization of quark-gluon shower created by the initial parton

= When the energy of parton-initiator is high enough in the final state a jet of particles will be formed,

which will correspond to initial parton with high accuracy:
p’et (E, Px, Py, Pz) = praton (E, Px, Py, Pz)
= The goals of this study:

» Understand the admissibility of such approximation at low energies

> Study processes of parton production at energy region between non-pQCD and pQCD



Jets at low energies in other experiments

= Jets at low energies was studied in 70s-80s in many experiments: PETRA, SFM 412,
Pisa—Stony Brook, AFS etc.

= Since there was not good enough clustering algorithms, single high p, hadrons and clusters of

particles were considered as jets

= Main idea of those experiments was in confirmation of events with jets and measurement

cross sections

https://inspirehep.net/literature/179516
https://inspirehep.net/literature/153610
https://inspirehep.net/literature/100764
https://inspirehep.net/literature/188734
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Problem statement

Performance of reconstruction for particles clustered production

= Search for clustered production of particles (efficiency)

= Reconstruction of parton-initiator kinematics depending on
reconstructed jet characteristic

= Reconstruction of parton-initiator flavour depending on reconstructed
jet characteristic

Clustering algorithms and parameters

Cluster/Jet reconstruction algorithm (Iterative Cone, kT, Anti-kT, Cambridge-Aachen, etc.)
Radius parameter

Inputs of clustering algorithms as objects of reconstruction and their kinematic thresholds
Energy/momentum of reconstructed cluster



Objects definition

= Clustering algorithms can find many jet-like objects in single event
= But we want to choose only objects, which could be associated with initial parton
» Clustered jets

»> We take leading p jet, but skip the jet with leading photon among jet constituents

= Possible application of machine learning for jet clustering!



Event selections

= We use Pythia8 generator and FastJet package

= \We generate process: qg — qy

= Energy of collisions /s = 27 GeV

= anti-kt algorithm with parameter R = 0.4, 0.8, 1.2 was used for jet clustering
= Jet was clustered from final state particles with p > 0.25 GeVand n < 5
= (Clustered jets are matched to hard scattered parton (status = 23)

= Leading photon py cuts: pr pnoton >2 GeV, >3 GeV, >4 GeV, >5 GeV

= Leading jet py cuts: pr jor >2 GeV, >3 GeV, >4 GeV, >5 GeV.

= Photon and jet are back to back: Ap > 2.7

= Jet should have at least two particles



Clustered jet p vs parton py

Normalized number of jets
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Normalized number of jets

Normalized number of jets
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= Jet properties have good agreement with properties of initial parton
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Optimization of parameters

= We studied different cuts on observed parameters and compare clustering algorithms:
» 1 regions: 0/0.5/1/1.5/2/3

» Minimaljetpr: 2,2.5,3,3.5,4,45,5
» Minimal particle p: 0.25, 0.5, 0.75, 1

» Anti-kt/Kt/CA algorithms with R = 0.4, 0.8, 1.2, 1.5

Anti-kt, R=0.4
Kt, R=0.4

CA, R=0.4
Anti-kt, R=0.8
Kt, R=0.8
CA, R=0.8

= The table was prepared for n from 0 to 3, pr ;o > 2 GeV and pryarticie > 0.25 GeV

1.5466
1.5513

1.5478
1.7480
1.7478
1.7388

0.4573
0.4606

0.4583
0.5257
0.5319
0.5250

= Different clustering
algorithms find similar jets

29.57
29.69

29.61
30.07
30.43
30.19
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Process qg — qy cross section (/s = 27 GeV)
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= Expected instantaneous luminosity - 1032cm™%s71
= For 100 days of work integral luminosity ~ 10°nb~1

= We have enough statistics even for high p partons
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Technical Design Report of the Spin Physics Detector. Version 1.00 (February 12, 2023)
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http://spd.jinr.ru/wp-content/uploads/2023/03/TechnicalDesignReport_SPD2023.pdf

Conclusion and plans

= Kinematical properties of hard scattered partons and clustered jets was compared on generator level
= There are objects that could be associated with initial parton
= Different clustering algorithms find similar jets, but we have to study time of their work

= We expect enough statistics to make these analysis

= Plans:
» Analyzing of inclusive jet production
» Check additional approaches to find clusters of particles ( usage machine learning )
> Repeat this study with full simulation of detector
> Quark/Gluon jet classification !?



Back up



Anti-k algorithm

= Jets are clustered with anti-k, algorithm

A2,
= Distance between objects in anti-k; algorithm defined as d;; = min (k%k%) R—‘ZJ,

where A7 = (y; — y;)*+(@; — @;)?

= The functionality of the algorithm can be understood by considering an event with a few hard
particles and many soft ones
> If hard particle 1 has no hard neighbours within a distance 2R then we have one perfectly
conical jet
> If another hard particle 2 is present such that R < A, < 2R then we have two jets with
some overlapping parts
> If distance between particles 1 and 2 A;, < R then both formed one jet



Event generation and jet reconstruction settings (with gen information)

q Y

= We use Pythia8 generator and FastJet package \;’Iﬁ

= We generate process: gg = qy
|

= Energy of collisions /s = 27 GeV

= anti-kt algorithm with parameter R = 0.4, 0.6, 0.8 was used for jet clustering 399999\\
= Minimum jet pr = 0.5GeV g q

= Jet was clustered from final state particles with p; > 0.25 GeVand n < 5
» (Clustered jets are matched to hard scattered parton (status = 23)

= Hard scattered parton cuts: pr ,qrcon >0 GeV, >3 GeV, >5 GeV (gen information cut)

= Jet should have at least two particles



Clustered jet pr vs parton py

Normalized number of jets
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Normalized number of jets

Normalized number of jets

Clustered jet (¢, n) vs parton (@, n)
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Mean values and o
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= High pr partons produce jets, which could be better associated with them




Magnetic field effects

= Magnetic field change trajectories of charged particles and affect on jet reconstruction:
» Jets becomes wider along phi angle
» Some low pr particles spin and go to endcaps

= How can we imitate magnetic field impact:
» We assume that magnetic field is uniform and equal to 1T in whole detector
> We take particle coordinates and calculate their change after some small dt as:
dvy = c(px/p)dt

> And we can calculate change of p, and p,.
2

c"q
dpx = T (pyBZ)dt
c?q
dpy F (—pyBy)dt
> We continue this iterations until v,.,, < 1080mm, i.e. particle reach ECal

> In the end we recalculate momentum of particle assuming that it moves directly from their
vertex to place where it reach ECal



Clustered jet vs parton (R=0.8, with magnetic field)

Normalized number of jets
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charged particles
Number of jets with magnetic field ~3 time less that without
magnetic field for same statistics
Fraction of jets with charged leading particle strongly depends
ON P, parton

> D1 parton > 0 GeV~30%

> Dr,parton > 5 GeV ~60%
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Clustered jet vs parton (R=0.4, with magnetic field)
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Clustered jet vs parton (R=0.6, with magnetic field)

Normalized number of jets
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