Status 2024-02-19

SPD Tracker group

February 23, 2024

Contents

Tracking

- Tracking information
- Fit coefficients
- 2 Comparison fit with/without unc.
- 3 Events outside RT vs merging window

4 Clustering

5 Charges

💿 backup

Tracking information

- Since end of 2022 we are using straw-stand software for:
 - Alignment (using linear 2-point fit)
 - Track reconstruction (using lsf)
- I created another procedure for fitting using pol1 LSF
 - Alignment information from straw-stand sw partially used
- While comparison with straw-stand sw I found:
 - There is no pol coefficient uncertainties
 - Used fitting with equal weights (no cluster position uncertainties used) !

racking Fit coefficients

Fit coefficients

There is no significant difference in values.All values in cm, for compatibility to straw-stand fit output. Will be changed to mm.

tracke

Tracking Fit coefficients

Fit coefficients uncertainties

Fit with/without uncertainty

Straw 9 RT for fit with/without uncertainty:

fit with cluster position uncertainties

time:trackPositionX {strawDet==11&&strawNum==9}

without cluster position uncertainties

time:trackPositionX {strawDet==11&&strawNum==9}

Additional RT-like lines on fit without uncertainties

Fit with/without uncertainty

Straw 7 RT for fit with/without uncertainty:

fit with cluster position uncertainties

time:trackPositionX {strawDet==11&&strawNum==7}

time:trackPositionX {strawDet==11&&strawNum==7}

Additional RT-like lines on fit without uncertainties

Fit with/without uncertainty

Straw 10 RT for fit with/without uncertainty:

fit with cluster position uncertainties

time:trackPositionX {strawDet==11&&strawNum==10}

without cluster position uncertainties

time:trackPositionX {strawDet==11&&strawNum==10}

Additional RT-like lines on fit without uncertainties

Events outside RT

Cut for select events within/outside RT

All events

RT-only cut

Calculated the percentage of events within RT for different merging window (maximal calculated time difference between scintillator hits in VMM and TIGER)

Window, ns	Fit with unc., %	Fit without unc., %
10	87.17	86.5
20	87.03	86.3
25	87.06	86.4
30	86.99	86.3
50	86.98	86.3
100	86.95	89.0
100, full stat	86.63	85.86

X-talks

Status 2024-02-19

11 / 35

Clustering

Methods checked

- Gaus2 (used up to 2024-02-19)
 - Cluster center: x̄ = Σc_ix_i/Σc_i, where x strip coord, c charge
 Uncertainty: σ² = Σ(x_i x̄)²·c_i²/Σc²/
- Gaus
 - Cluster center: $\bar{x} = \frac{\sum c_i x_i}{\sum c_i}$, where x strip coord, c charge
 - Uncertainty: $\sigma^2 = \frac{\sum (x_i \bar{x})^2 \cdot c_i}{\sum c_i}$
- Gaus-scaled (the most logically-defined, used now)
 - Cluster center: $\bar{x} = \frac{\sum c_i x_i}{\sum c_i}$, where x strip coord, c charge
 - Uncertainty: $\sigma^2 = \frac{1}{N} \frac{\sum (x_i \bar{x})^2 \cdot c_i}{\sum c_i}$
- Geom (geometrical mean, mean square minimization)
 - Cluster center: $\bar{x} = \frac{\sum x_i}{N}$, where x strip coord • Uncertainty: $\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{N}$
- Geom-scaled
 - Cluster center: $\bar{x} = \frac{\sum x_i}{N}$, where x strip coord
 - Uncertainty: $\sigma^2 = \frac{1}{N} \frac{\sum (x_i \bar{x})^2}{N}$

Comparison uncertainty calculation methods

Comparison uncertainty calculation methods

The most reasonable method (gaus-scaled) is the best?

Comparison uncertainty calculation methods

Comparison uncertainty: cluster

Comparison uncertainty: table

	Resid	ual at MM0		
type	1 strip max	2 strip max	3 strip max	4 strip max
				peak 8μ m $\sigma = 19\mu$ m fit [-0.01: 0.02]
Gaus; Uncertainty $=\sigma_{gaus}$				unsymmetrical peak
	peak 15 μ m	peak 12 μ m	peak 11 μ m	peak 11 μ m
. —	$\sigma=$ 33 μ m	$\sigma=$ 26 μ m	$\sigma=$ 26 μ m	$\sigma=$ 27 μ m
Gaus; Uncertainty = σ_{gaus}/\sqrt{N}	fit [-0.02; 0.04]	fit [-0.01; 0.03]	fit [-0.02; 0.03]	fit [-0.02; 0.03]
				peak 7 μ m
				$\sigma=$ 17 μ m
				fit [-0.01; 0.02]
gaus2; Uncertainty = $\frac{\sum (x-\bar{x})^2 \cdot c^2}{\sum c^2}$				unsymmetrical peak

Propagated uncertainty

Number of hits in cluster

Cluster size at MM0 (with pseudotrack req.)

Size of "empty" region inside cluster, MM0

SuBRUPL_0_GEMINO__C_T. Maximal "empity" region size in MicroMegas 0 (statistic in Weine layers) 10⁰ 10¹ 10¹ 10¹ 10² 10² 5 10 15 20 25

February 23, 2024

Overflow

Number of non-overflow hits in cluster)

SubRUN_0_GEMROC_C_TL: N hits with and without overflow in MicroMegas 0 (all clusters)

(only-overflow cluster not shown)

- $\bullet\,$ Currently, overflow are hits with charge >45 fC
- On previous plots overflow hits was removed from clusters
- Need to check the difference due to overflow removing procedure

Finally, method selected: gaus, normalized to number of hits (gaus-scaled), with 2 "empty" strips inside cluster permitted

Overflow

Overflow

MM0 residual for different overflow removing method)

- No significant effect
- Then, overflow (charge > 45 fC) removing stays

Charge

Charge at MMs

I compared charge in different MM on run TB-August-56 MM0 charge MM1 residual

- Only MM1 tigers was fully calibrated on external pulser.
- Other tigers was calibrated on July, I believe

SubRUN_0_GEMROC_C_TL: charge (Sample and Hold mode) for detector 3

Charge

Charge at MMs

Backup slides

$$f(x) = p_0 + p_1 \cdot x$$
$$\Delta f(x0) = \sqrt{(\Delta p_0)^2 + (\Delta(p_1 x))^2}$$
$$\Delta(p_1 x) = (p_1 x) \cdot \sqrt{\left(\frac{\Delta p_1}{p_1}\right)^2 + \left(\frac{\Delta x}{x}\right)^2} = \left|\frac{\Delta p_1}{p_1}\right| \cdot (p_1 x)$$

26 / 35

Geometrical and weighted mean

Filtering RT by mean square

Mean square distribution for 10mm straw 9

10mm straw 9 RT with mean square < 0.25mm

After filtering we still have some "noise" inside RT

~			

Status 2024-02-19

28 / 35

X-talks

X-talks

backı

X-talks

Status 2024-02-19

X-talks

tracker,

X-talks

Status 2024-02-19

X-talks

X-talks

35 / 35