XIII MPD Collaboration Meeting 23-25 April 2024

PWG5 (Heavy Flavour) summary

Alexander Zinchenko

Outline

- 1. Charm production cross-section
- 2. Scope of activities
- 3. Inner Tracking System (ITS) studies
- 4. Related Work Packages:
 - 1. ITS track reconstruction
 - 2. Exclusive D-meson decay selection
- 5. D-meson semileptonic decays
- 6. $J/\psi \rightarrow e+e-selection$
- 7. Summary

Landscape of heavy-ion experiments

• At present, MPD/NICA, NA61/SHINE at SPS and CBM/SIS100 have charm studies in their physics programs.

Hadron	Decay channel	<i>c</i> τ̄ [μm]	BR	
D^0	$\pi^+ + \mathrm{K}^-$	123	3.89%	
D^+	$\pi^+ + \pi^+ \mathrm{K}^-$	312	9.22%	
D_{s}^{+}	$\pi^+ + K^- + K^+$	150	5.50%	
$\Lambda_{\rm c}$	$\mathbf{p} + \pi^+ + \mathbf{K}^-$	60	5.00%	
J/ψ	e⁻ + e⁺		6.00%	

Charm production cross-sections

• W. Cassing, E. L. Bratkovskaya, A. Sibirtsev, "Open charm production in relativistic nucleus-nucleus collisions", arXiv:nucl-th/0010071, 2001

Charm production cross-sections

FIG. 5. The transverse mass specta from pp collisions at $T_{lab} = 25$ GeV for pions (full squares), kaons (open triangles), and ϕ -mesons (full rhombes) from the LUND string model [52] as implemented in HSD. The $D + \bar{D}$ meson (open squares) and charmonium (full dots) spectra – including the decay $\chi_c \rightarrow J/\Psi + \gamma$ – result from the parametrizations specified in Section 2. The dashed line shows an exponential with slope parameter $E_0 = 0.143$ GeV.

FIG. 16. The transverse mass spectra of pions (full squares), kaons (open triangles), ϕ -mesons (full rhombes), $D + \bar{D}$ mesons (open squares) and $J/\Psi, \Psi'$ mesons (full dots) in the HSD approach for a central Au + Au collision at 25 A·GeV without including self energies for the mesons. The crosses stand for the *D*-meson m_T spectra when including an attractive mass shift according to (9). The thin dashed line shows an exponential with slope parameter $E_0 = 0.143$ GeV. Note that final state elastic scattering of kaons and ϕ -mesons with pions has been discarded in the calculations.

 W. Cassing, E. L. Bratkovskaya, A. Sibirtsev, "Open charm production in relativistic nucleus-nucleus collisions", arXiv:nucl-th/0010071, 2001

A. Zinchenko

- Open charm studies: exclusive decays → Inner Tracking System (ITS) performance evaluation (synergy with ITS project) → dedicated track reconstruction methods ("Vector Finder")
- 2. Semi-leptonic decays and charmonia → lepton (electron) tagging (synergy with dilepton studies)

Reconstruction of charmed particles in Au+Au central collisions with MPD ITS3+TPC tracking system

Kondratev V., Murin Yu.

MPD WPG5

MPD ITS geometric models

Two ITS geometric models were used for simulation:

1) project model (ITS-5-40) with 5 layers consisting of ladders with standard MAPS

Sensitive area: 15×30 mm² Thickness: 50 μm Number of pixels: 512×1024 Pixel size: 28×28 μm².

- 2) ITS3-like model (ITS-5-35) with OB consisting of 2 layers of standard MAPS and IB consisting of 3 layers of bended staves of MAPS (15 um pitch) with large area and thickness of 30 μm
 - Size of bended MAPS:
 - 1 layer 280*56.5 mm²
 - 2 layer 280*75.5 mm²
 - 3 layer 280*94.0 mm²

Layer	No of MAPS	R _{min} , mm	R _{max} , mm	Length, mm
1	24 *12	22.4	26.7	750
2	24*22	40.7	45 .9	750
3	24*32	59.8	65.1	750
4	98*36	144_5	147.9	1526
5	98*48	194_4	197.6	1526

Layer	No of MAPS R _{min} , mm		R _{mar} , mm	Length, mm	
1	4	18	18.03	560	
2	4	24	24.03	560	
3	4	30	30.03	560	
4	98*36	144_5	147_9	1526	
5	98*48	194.4	197.6	1526	

A. Zinchenko

MPD collaboration meeting 25.04.2024

10

D⁺ reconstruction efficiency with two ITS models

The reconstruction efficiency increases by **25%** when using ITS with an Internal Barrel built on the base of a new type of sensors (bended MAPS with large area)

Published articles

1. V. P. Kondratyev, N. A. Maltsev and Yu. A. Murin. Identification Capability of the Inner Tracking System for Detecting D Mesons at the NICA-MPD Facility. Bulletin of the Russian Academy of Sciences: Physics, 2022, Vol. 86, No. 8, pp. 1005–1009.

2. Zherebchevsky, V. I., Maltsev, N. A., Nesterov, D. G., Belokurova, S. N., Vechernin, V. V., Igolkin, S. N., Kondratiev, V. P., Lazareva, T. V., Prokofiev, N. A., Rakhmatullina, A. R. & Feofilov, G. A.

New Technologies for the Vertex Detectors in the NICA Collider Experiments.

Bulletin of the Russian Academy of Sciences: Physics. **2022**, Vol.86,No. 8, pp. 948-955.

(b) $M(\pi\pi K)$: signal + background (100 M) 860 H 840 S/sqrt(B+S) = 7.0 $M(D^+) = 1.866 \pm 0.002 \text{ GeV}$ S/B = 0.12820 S = 440 $\sigma(D^+) = 0.016 \pm 0.001 \text{ GeV}$ 800 Eff = 0.5%780 760 740 720 700 680 660 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 $M(\pi\pi K)$, GeV

RSF Grant for SpbU

Leader: Vladimir Zherebchevsky

Superdense nuclear matter and methods of its study in experiments at the NICA accelerator-storage complex

2023-2025

Fig. 3. Signal of D_s^+ mesons in the invariant-mass spectrum, separated according to (a) TC and (b) MVA in 10⁸ central Au + Au collisions at $\sqrt{s_{NN}} = 9$ GeV: (1) full spectrum, (2) residual combinatorial background.

A. Zinchenko

All-MAPS "development" model of the MPD ITS

V. Kondratiev, Yu. Murin

A. Zinchenko

Geometric model of 6 layer ITS used for development of simulation software package

OB - 3 layers of ALPDE-like MAPS (15*30 mm²) with effective thickness of 700 μm IB - 3 layers of ALPIDE-like MAPS (15*30 mm²) with effective thickness of 50 μm (IB -"development" configuration)

Lavor	R _{min} , mm	R mm	Length,	
Layer		ic _{max} , iiiii	mm	
1	22.4	26.7	750*	
2	40.7	45.9	750*	
3	59.8	65.1	750*	
4	93.2	96.7	1526	
5	144.5	147.9	1526	
6	194.4	197.6	1526	

Beam pipe diameter - 40 mm

Pont-like source

Track reconstruction: Vector Finder for ITS

A. Zinchenko

Semileptonic decays: inclusive electrons (83+% of ECAL modules will be ready)

c . c . /

D⁺ DECAY MODES

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0) = \Gamma(\overline{K}^0)$.

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level			
Inclusive modes						
Γ_1	e ⁺ semileptonic	(16.07 ± 0.30) %	%			
Γ2	μ^+ anything	(17.6 ± 3.2) %	6			
Γ ₃	K^{-} anything	(25.7 ± 1.4)	6			
Γ4	$\overline{K}{}^{0}$ anything $+ K{}^{0}$ anything	(61 ± 5) %	6			
Γ ₅	K^+ anything	(5.9 ± 0.8)	6			
Γ ₆	$K^*(892)^-$ anything	(6 ± 5)	6			
Γ ₇	$\overline{K}^*(892)^0$ anything	(23 ± 5) 9	6			
Γ8	$K^*(892)^0$ anything	< 6.6	% CL=90%			
Гg	η anything	(6.3 ± 0.7) %	6			
Γ ₁₀	η' anything	(1.04 ± 0.18)	6			
Γ_{11}	ϕ anything	(1.12 ± 0.04)	6			

D⁰ DECAY MODES

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0) = \Gamma(\overline{K}^0)$.

	Mode	F	raction	(Г _і /Г)	Confid	ence level
	Topologic	cal mo	des			
Γ1	0-prongs	[a]	(15	± 6) %	
Γ2	2-prongs		(71	± 6) %	
Γ ₃	4-prongs	[b]	(14.6	± 0.5) %	
Γ_4	б-prongs	[c]	(6.5	\pm 1.3	$) imes 10^{-4}$	
	Inclusive	e mod	es			
Γ ₅	e ⁺ anything	[d]	(6.49	\pm 0.11) %	
Γ ₆	μ^+ anything		(6.8	\pm 0.6) %	
Γ ₇	K ⁻ anything		(54.7	\pm 2.8) %	S=1.3
Г ₈	\overline{K}^0 anything $+ K^0$ anything		(47	± 4) %	
Γ9	K ⁺ anything		(3.4	± 0.4) %	
Γ ₁₀	$K^*(892)^-$ anything		(15	\pm 9) %	

Transverse momentum and centrality dependence of high- p_T non-photonic electron suppression in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} = 200 \text{ GeV}$

B.I. Abelev,⁹ M.M. Aggarwal,³⁰ Z. Ahammed,⁴⁵ B.D. Anderson,²⁰ D. Arkhipkin,¹³ G.S. Averichev,¹²
Y. Bai,²⁸ J. Balewski,¹⁷ O. Barannikova,⁹ L.S. Barnby,² J. Baudot,¹⁸ S. Baumgart,⁵⁰ V.V. Belaga,¹²
A. Bellingeri-Laurikainen,⁴⁰ R. Bellwied,⁴⁸ F. Benedosso,²⁸ R.R. Betts,⁹ S. Bhardwaj,³⁵ A. Bhasin,¹⁹ A.K. Bhati,³⁰
H. Bichsel,⁴⁷ J. Bielcik,⁵⁰ J. Bielcikova,⁵⁰ L.C. Bland,³ S-L. Blyth,²² M. Bombara,² B.E. Bonner,³⁶ M. Botje,²⁸

FIG. 1: (a) dE/dx projections for $5 < p_T(\text{GeV}/c) < 7$ in central Au+Au events after EMC and SMD cuts. The lines are Gaussian fits for p + K, π , and electron yields. (b) Invariant e^+e^- mass spectrum. (c) Ratio of inclusive and background electron yield vs. p_T for p+p and Au+Au collisions. Vertical bars are statistical errors, boxes are systematic uncertainties.

A. Zinchenko

Semileptonic decays: inclusive electrons (83+% of ECAL modules will be ready)

Transverse momentum and centrality dependence of high- p_T non-photonic electron suppression in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} = 200 \text{ GeV}$

B.I. Abelev,⁹ M.M. Aggarwal,³⁰ Z. Ahammed,⁴⁵ B.D. Anderson,²⁰ D. Arkhipkin,¹³ G.S. Averichev,¹²
Y. Bai,²⁸ J. Balewski,¹⁷ O. Barannikova,⁹ L.S. Barnby,² J. Baudot,¹⁸ S. Baumgart,⁵⁰ V.V. Belaga,¹²
A. Bellingeri-Laurikainen,⁴⁰ R. Bellwied,⁴⁸ F. Benedosso,²⁸ R.R. Betts,⁹ S. Bhardwaj,³⁵ A. Bhasin,¹⁹ A.K. Bhati,³⁰
H. Bichsel,⁴⁷ J. Bielcik,⁵⁰ J. Bielcikova,⁵⁰ L.C. Bland,³ S-L. Blyth,²² M. Bombara,² B.E. Bonner,³⁶ M. Botje,²⁸

FIG. 1: (a) dE/dx projections for $5 < p_T(\text{GeV}/c) < 7$ in central Au+Au events after EMC and SMD cuts. The lines are Gaussian fits for p + K, π , and electron yields. (b) Invariant e^+e^- mass spectrum. (c) Ratio of inclusive and background electron yield vs. p_T for p+p and Au+Au collisions. Vertical bars are statistical errors, boxes are systematic uncertainties.

Erratum: Transverse momentum and centrality dependence of high- p_T non-photonic electron suppression in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} = 200 \text{ GeV}$ [Phys. Rev. Lett. 98,192301 (2007)]

B.I. Abelev, M.M. Aggarwal, Z. Ahammed, B.D. Anderson, D. Arkhipkin, G.S. Averichev, Y. Bai, J. Balewski, O. Barannikova, L.S. Barnby, J. Baudot, S. Baumgart, V.V. Belaga, A. Bellingeri-Laurikainen, R. Bellwied, F. Benedosso, R.R. Betts, S. Bhardwaj, A. Bhasin, A.K. Bhati, H. Bichsel, J. Bielcik, J. Bielcikova, L.C. Bland,

Erratum (2011)

FIG. 1: (c) Ratio of inclusive and background electron yield vs. p_T for p+p and Au+Au collisions. Vertical bars are statistical errors, boxes are systematic uncertainties.

A. Zinchenko

1. Cross-sections from Pythia8

2. pp @ 200 GeV:
 3. minimum bias 28.485 mb, D → e+- 7.833*10⁻² mb
 4. L = 100 nb⁻¹: 2.8*10⁺⁹ min. bias and 7.8*10⁺⁶ D electrons

5. pp @ 25 GeV:

- 6. Minimum bias 23.921 mb, D \rightarrow e+- 4.591*10⁻⁴ mb
- 7. $L = 100 \text{ nb}^{-1}$: 2.4*10⁺⁹ min. bias and 4.6*10⁺⁴ D electrons

Semileptonic decays: inclusive electrons

A. Zinchenko

1. Cross-sections from Pythia8

pp @ 25 GeV: Minimum bias 23.921 mb, $J/\psi \rightarrow e^{+}- 6.458^{*}10^{-6}$ mb L = 155 nb⁻¹: 3.7*10⁺⁹ min. bias and 1.0*10⁺³ J/ ψ electrons

pp @ 11 GeV J/ $\psi \rightarrow e^{+-} 0.271^{*}10^{-6} \text{ mb}$

- The MPD experiment can potentially contribute to charm studies in heavy-ion collisions
- Studies of the ITS performance and design optimization for open charm measurements are ongoing
- > Feasibility of open charm semi-leptonic decay measurements and J/ ψ to e+e- are still an open question