MPD DAQ & Trigger status

Andrey Shchipunov MPD DAQ working group

A. Baskakov, S. Bazylev, A. Egorov, A. Fediunin, I. Filippov, S. Kuklin, A. Shchipunov, A. Shutov, I. Slepnev, V. Slepnev, N. Tarasov, A. Terletskiy

Joint Institute for Nuclear Research

XIII Collaboration Meeting of the MPD Experiment at the NICA Facility

MPD DAQ Design Goals

Properties

Reliable data transfer. Pipeline operation with sync and async stages. Extensive diagnostics in hardware and software. Monitoring, logging. Data integrity check on all levels. CRC, sequence numbers, FEC. Fault tolerant, Highly available. Fast self recovery after SEU events. Distributed, scalable, extendable. Based on open and industry standards. Flexible architecture. Partitioning for independent subsystem operation.

Operation Modes

Multiple hardware trigger classes Uncompressed, full raw data during MPD commissioning Large calibration data events at low trigger rate High multiplicity events from central collisions at planned trigger rate

DAQ in numbers

Up to 7 kHz trigger rate, over 1 MB event size to storage device From 5 to 30 GB/s uncompressed raw data rate from readout cards to FLP Up to 200 PB per year of raw data

MPD DAQ Architecture

Detector Readout Electronics

TDC Boards

ADC Boards

ADC64ECAL

	TDC72VHL	TDC64VLE	
Number of Channels	72	64	
Input Signal	LVDS		
Input Impedance	100 Ohm		
Input Diff. Voltage	25 mV min		
Input Connector	CXP	Molex P50	
Time Resolution.	~25 ps (with INL)	100 ps	
Data Transfer	1Gb/s Ethernet		
Synchronization	FE-Link over VXS		

	ADC64ECAL	ADC64s2-v6
Number of channels	64	64
Sample rate	62.5 MS/s	62.5 MS/s
Resolution	14 bit	14 bit
Power consumption	< 15 W	< 20 W
Magnetic field tolerance	by design	by design
Radiation hard DC/DC	no	no

Time, Trigger and Clock distribution modules

TTVXS

CRU16

- Clock, timestamp and trigger distribution to VXS payload boards: backplane FE-Link interface
- 4 SFP+ sockets for Detector Readout, Trigger Distribution and Clock & Timing connections
- Reference frequency and timestamp provided by White Rabbit Network or FE-Link (with CRU-16)
- Additional clock and trigger interface by FMC (VITA-57) card slot – integration with other systems

- FE-Link interface to DRE boards multi-gigabit duplex serial synchronous interconnect with deterministic latency. Provides clock and trigger information for downstream boards and receives raw data stream
- SO-DIMM DDR3 memory for data buffers. Decouples realtime hardware data flow from high latency software data receivers
- 4 QSFP downlink sockets for 16 Detector Readout boards connections grouped by 4
- > 1 QSFP uplink socket for 40 Gb Ethernet data transfer
- ➢ 3 SFP sockets for Trigger Distribution, Clock & Timing
- Timing synchronization by White Rabbit network

DAQ Electronic Modules Production

Required boards							Manufactured		
Product	ECAL	FHCAL	FFD	TOF	TPC	LUM	Trigger Distrib.	and Tested Q1 2024	Progress
TDC72VHL			10	196				219	106 %
TDC64VLE	—					2		2	100 %
TTVXS			1	14			4	20	100 %
ADC64-ECAL	600							630	105 %
ADC64S2 v6		10						0	0 %
CRU16	38	2		1	2		1	45	102 %

TDC72VHL, TTVXS status

- Hardware ready 100%
- Firmware with basic functions tested on TOF stand
- Software ready
- "FE-Link over VXS" firmware under testing on TOF stand

ADC64 family status

- Hardware manufactured
- Tested on stands and BMN
- Refactoring monolithic to modular design (firmware and software) in progress.

CRU-16 status

- Hardware manufactured
- All on-board components tested
- Some firmware parts ready
- FE-Link under testing on ECAL stand
- Control software under development

MPD DAQ Data Center

A.Shchipunov, JINR XIII Collaboration Meeting of the MPD Experiment at the NICA Facility

MPD Trigger

Main goal — minimize time from beam interaction event to detectors readout trigger signal.

There are 4 trigger detectors in MPD — FFD, FHCAL, TOF, Luminosity:

- FFD group designed their own trigger electronics
- FHCAL trigger processing on ADC62s2 modules: digital threshold for every channel, then some logic in central trigger module
- TOF sum of all detector channels, new modules for trigger processing
- Luminosity same modules as TOF, but different logic

TOF trigger

Test setup

20 trigger signals are output from each TOF module

- 2 TOF modules are connected to each summator
- summators make logical "And" for pairs of input channels, then the sum is calculated.
- data from the summator to the hub is transmitted over fiber at a speed of 1 GB/s
- concentrator module on platform calculates final sum across the entire TOF detector and outputs the trigger signal for the central trigger module

Test result — 105 ns delay from input to output

TOF trigger modules

TLU40LVDS — TOF summator

TLU40LVDS — calculate sum for two TOF detector modules and transmit it via central SFP connector.

This modules has additional 8 LEMO coaxial connectors.

Two TLU40LVDS will utilize 4 LEMO for reading trigger signals from Luminosity detector.

TLU16SFP — read digital sums from up to 16 TLU40LVDS modules (for MPD we need 14 TLU40LVDS). Then final sum is calculating. And after comparing with adjustable threshold transmitting complete TOF trigger signals via LEMO.

FHCAL trigger

Logic diagram for test (delays are for ADC64ECAL)

ADC64s2 v5 — 390 ns trigger delay

To mesure possible trigger delay for FHCAL detector two existing ADC64 module types were used: **ADC64s2 v5** and **ADC64ECAL**. Both module types used in MPD. Main difference between this boards, exept geometry, is different ADC chips.

Test shows that delay for **ADC64ECAL** module is **150 ns less** than delay for **ADC64s2**.

ADC64ECAL — 240 ns trigger delay

A.Shchipunov, JINR XIII Collaboration Meeting of the MPD Experiment at the NICA Facility

Central Trigger Module

For central trigger module UT24VE module will be used. UT24VE module already designed and produced. It has 24 programmanle LEMO I/O (LVTTL). For MPD we need 18 trigger connections:

- 3 connections for FFD trigger input
- 10 connections for FHCAL trigger input
- 1 connection for TOF trigger input
- 2 connections for Luminosity trigger input
- 2 connections for TPC trigger output

Readout trigger will be transmit via FE-Link network.

Trigger latency

Trigger subsystems		Central trigger	TPC	Full delay
TOF	300 ns			
Luminosity	300 ns	EQ po	650 ns	~1000 ns
FHCAL	250 ns	50 115		
FFD	140 ns			

Calculated full trigger delay is about 1000 ns.

Trigger distribution

Trigger Electronic Modules Production

		Requir	ed boa	rds		
Product	FFD	TOF	LUM	FHCAL	Status Q1 2024	
TLU40LVDS		14			PCB production	
TLU16SFP		1			PCB production	
ADC64s2 V6				10	PCB mounting	
UT24VE	1			4	Module produced	

All modules designed. UT24VE already produced. Other — in different stages of production.

FPGA gateware — in progress.

Thank you!