

Strangeness and quarkonium production with STAR BESII program

XIII Collaboration Meeting of the MPD Experiment at the NICA Facility, April 23–25, 2024

Shuai Yang South China Normal University

Motivation

- study the QCD phase diagram

Why strangeness?

- Traditional probe for QGP formation
 - Strange baryon-to-meson ratio can be utilized to probe deconfinement

- Rapidity density of (anti-)strange baryons may give insight on the baryon stopping mechanism
 - Crucial ingredient to estimate the feed-down contribution for identified hadrons

XIII MPD Collaboration Meeting

NA49, PRC 78 (2008) 034918

Why heavy quarkonium?

- J/ψ suppression was proposed as a direct proof of QGP formation
 - Color screening

 dissociation

Matsui and Satz, PLB 178 (1986) 416

• However, different effects in play

- Regeneration
- Cold nuclear matter effects
- Feed down contributions
- \bullet . . .

Ferreiro et al., PRC 81 (2010) 064911 Gavin et al., PRL 78 (1997) 1006 Capella and Ferreiro, EPJC 42 (2005) 419

• Systematically study the J/ ψ production

- Centrality, p_T differential measurements
- Energy dependence

Shuai Yang

XIII MPD Collaboration Meeting

Credit: A. Rothkopf

 $\mathbf{T} = \mathbf{0}$

 $0 < T < T_{C}$

 $T > T_C$

(Re)generation 2 Quarkonium **QGP** melting **Energy Density**

The STAR experiment

Inner TPC upgrade • $|\eta| < 1 \rightarrow |\eta| < 1.5$ Better dE/dx resolution

Strangeness production

Strangeness reconstruction

ALICE-PHO-SKE-2015-001

Shuai Yang

$$(M_{\phi}) \rightarrow M(M) + K_{\phi} (K_{\phi}) (D = 07.6)$$

 $\phi \rightarrow K^{+} + K^{-} (B = 49.1\%)$

p_T spectra of strange hadrons at 19.6 GeV

Shuai Yang

• K_S^0 measurements down to 0 pT • $\Lambda\&\Xi$: Boltzmann function is employed for low p_T extrapolation ϕ : Levy function is used for low p_T $oldsymbol{O}$ extrapolation

8

Energy and centrality dependence of ϕ production

- Fit functions: $dN/dy = k \times \langle N_{part} \rangle^{\alpha}$
- Common centrality dependence for ϕ, Λ, K production at 19.6 GeV • Above 7.7 GeV, data indicates a steeper increase on strangeness yields compared to UrQMD

 Thermal production of strangeness in the QGP is not included in UrQMD XIII MPD Collaboration Meeting Shuai Yang

Rapidity distributions of strange hadrons

• New results for K_{S}^{0} , $\Lambda(\bar{\Lambda})$, $\Xi^{-}(\bar{\Xi}^{+})$ for

- compared to anti-baryons
- Shuai Yang

Nuclear modification factor

- RCP tends to be flat and larger than unity at $p_T > 2 \text{ GeV/c}$
 - Radial flow
 - Quark coalescence

- The enhancement is stronger for multistrange particles compared to $K_S^0 \& \Lambda$
 - A signature for QGP formation

$$R_{ ext{CP}} = rac{[(dN/dp_T)/\langle N_{ ext{coll}}
angle]_{ ext{central}}}{[(dN/dp_T)/\langle N_{ ext{coll}}
angle]_{ ext{peripheral}}}$$

11

Baryon-to-meson ratios

Baryon-to-meson ratios: often utilized to probe deconfinement

- Baryon enhancement observed at 14.6 and 19.6 GeV in all measured rapidity regions
 - Consistent with QGP formation in central 14.6 and 19.6 GeV collisions
 - Clear centrality and rapidity dependence

XIII MPD Collaboration Meeting

Baryon-to-meson ratios

- Good agreement between data and recombination models
 - Ω and ϕ are predominantly produced through the recombination of thermalized strange quarks in QGP
- Significant Ω enhancement over ϕ is observed at intermediate p_T with increasing system size
- Ω/ϕ ratio in p+p collisions is closed to that in peripheral Au+Au collisions
 - Hint of smooth transition from p+p collisions to Au+Au collisions

Quarkonium production

J/ψ signal extraction

• J/ψ template: MC simulation with detector effects

Combinatorial background: mixed-event technique

Residual background: a first order polynomial function

Inclusive J/ ψ invariant yields

● Inclusive J/ ψ yields as a function of p_T at mid-rapidity in Au+Au collisions at 14.6, 19.6 and 27 GeV

Shuai Yang

p+p baseline

Shuai Yang

The p+p baselines at BES-II energies are extracted from world-wide data

XIII MPD Collaboration Meeting

The p_T and centrality dependence of J/ψ R_{AA}

• J/ψ is significant suppressed at low p_T

- \mathbf{R}_{AA} increases with \mathbf{p}_T at BES-II energies
- RAA shows no energy dependence at No significant p_T dependence at 200 GeV RHIC with similar system size

$$R_{AA} = \frac{\sigma_{inel}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA} / dy dp_T}{d^2 \sigma_{pp} / dy dp_T}$$

Shuai Yang

XIII MPD Collaboration Meeting

STAR, PLB 797 (2019) 134917

• Hint of decreasing trend towards central collisions

Energy dependence of J/ψ R_{AA}

- J/ ψ R_{AA} at 14.6, 19.6 and 27 GeV follows the trend
- No significant energy dependence of J/ψ R_{AA} in central collisions up to 200 GeV
- Regeneration dominates at LHC energies
- Transport model qualitatively describes the observed energy dependence

Summary and outlook

- Wider rapidity distributions for baryons compared to anti-baryons
- Baryon enhancement is observed from 14.6 to 200 GeV
- Smooth trend in strangeness enhancement from small to large systems
- Systematically study J/ψ production at BES-II

 - No significant collision energy and system dependence of J/ψ R_{AA} at RHIC energy • J/ψ R_{AA} increases with p_T, hint of decreasing with centrality
- More strangeness results will be released in the coming sQM with BES-II data

• Precise strangeness measurements with extended p_T and rapidity at BES-II

Backup

Energy dependence of R_{CP} for ϕ

• $R_{CP} > 1$ for higher p_T at 19.6 GeV and lower energies

- $R_{CP} < 1$ for the whole p_T region at top **RHIC** energy
 - Stronger energy loss in QGP

22

XIII MPD Collaboration Meeting

(0-10%/40-60%)

с^р

Inelastic pp cross section

XIII MPD Collaboration Meeting

Shuai Yang

