

Simulation and position optimization of real bundles of micro mirrors for TPC laser calibration system

XIII Collaboration Meeting of the MPD Experiment at the NICA Facility

Alexander Bychkov abychkov@jinr.ru April 24, 2024 Dubna, Russia

MPD TPC

TPC gas

Gas mixture 90% Ar + 10% CH_4

Operating pressure 2.0±0.1 mbar

(relative to atmospheric)

Temperature 25 °C

stability < 0.5 °C

Electron drift velocity in electric field 140 V/cm and magnetic field 0.5T

~5.53291 cm/µs +/- 0.01%

(Garfieg++ simulation)

According to TPC TDR v7

Laser Calibration System

UV laser system

- Two pulsed 130 mJ 5-7 ns Nd:YAG lasers
- ~1mm diameter
- 224 laser beams in total
- 112 "tracks" in each half of the TPC
 - 4 planes of laser beams
 - 30cm between planes
 - 16 bundles with 7 micro mirrors each
 - 4 tubes with 4 bundles
- 10 Hz impulses

Laser Calibration System (2)

Impact on drift velocity

Temperature

Pressure

Charged areas in gas volume

Problems of real mirrors bundles

Deviations of laser beams

Drawings \rightarrow 90° to Z axis (θ)

Drawings \rightarrow 11° between beams in XY palne (φ)

Positioning errors in TPC tubes

Laser micro mirrors bundles

32 mirrors bundles needed for the TPC

16 per half

4 in tube (1 bundle for each laser pane)

37 mirrors bundles produced in total

Each bundle with its frame produced as one

- 4 types of holding frames \rightarrow 4 types of bundles
 - 90° direction frame 9 bundles
 - 0° direction frame 9 bundles
 - 180° direction frame 9 bundles
 - 360° direction frame 10 bundles

In single tube should be placed only bundles with different types of frames

Measurements of real micro mirrors bundles (φ angles)

Measurements of real micro mirrors bundles (\theta angles)

Example of simulation of laser calibration system

Drift velocity calculation algorithm

Based on cumulative signal-in-time distribution from all channels in sector

Laser grid planes forms high peaks in the distribution

The peaks determines position of laser grid planes

Drift time between positions of laser planes provides velocity information

Difference between measured and «expected» position of laser grid provides trigger delay information

Bundles position optimization

Point of interest for each TPC sector

3 points between pairs of laser planes

interpolated/extrapolated velocity value for each hit

or average velocity in halves

Problems

No «proper» peaks

Multiple peaks individual pattern for each plane

Optimization of bundles position

Optimization task of bundles position

- 4 tubes for each half of TPC
- 4 different bundles per tube
- Things that not impact on velocity calculation quality
 - Rotation of tube position
 - Switching laser planes

Genetic algorithm optimization

(OpenGA library)

Optimization function – minimization of peaks in bundles position configuration

There are many equivalent solutions of bundles placement

West side of TPC

East side of TPC

Halves of TPC

Velocity calculations for halves (500 events)

Target velocity 5.5 cm/µs

Results of simulations and optimizations

Velocity map for sectors

Quality of bundles producing not allows to calculate velocity with algorithm based on cumulative signal-in-time distributions

Velocity in halves

Deviations of laser beams leads to systematic errors in velocity calculations between planes

Average velocity in a half can be calculated

Systematic errors can be corrected after choosing of micro mirrors bundles placement

Thank you for attention!

XIII Collaboration Meeting of the MPD Experiment at the NICA Facility

