


Concepts
 Modular, used defined interface (DIM + defined 

message format). 

 Extendable

 Modules could be replaced/modified

 As simple as possible (KISS – Keep It Stupidly Simple) 
and transparent

 For MPD experiment only (not generic)

 Based on DB to be used by MPD (PostgreSQL ?) 
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CDCS interface I
 RC/CDCS subscribes to published by subdetectors 

state InfoItems with names 

MPD_DCS_State/<subdetector name>

 Run configuration contains subdetectors list used in a 
run

 RC/CDCS sends run type name (text) to all 
CommandItems of subdetectors being in a list. 
CommandItems should have a name like

MPD_DCS_IniCmd /<Subdetector name>



CDCS interface II
 Each subdetector DCS root node could (should?) have 

a CommandItem with name

MPD_DCS_DisplayCmd/<subdetector node name>

A command received by this CommandItem should start 
diagnostic tool (see below)

 DAQ should have additional Info/Command items to 
provide vital information to/from the RC/CDCS (to be 
discussed with DAQ team)



CDCS interface III
 RC/CDCS has a CommandItem MPD_DCS_Messages to 

receive messages from subsystems/subdetectors

 Format of message should be like (to be discussed)
 <subdetector name>_<severity level>_<message text>

 <severity level> defines a way to process the message

 0 -> just to show in a window. Could be scrolled by messages 
arriving later

 1 -> stays at the screen until confirmed

 2 -> stays at the screen until confirmed + sound alarm if not 
confirmed during defined time (1 min as an example)

 3 -> stays at the screen until confirmed + instant sound alarm 

 All messages have a text content



How it could look like



States and colors
State=-1, Item does not have a state, no color to be 

displayed

State=0, OFF  - any of sub-elements does not respond

State=1, StdBy – any of sub-elements is in stand-by mode

State=2, NotRdy – any of element is in transition state 
(Time-out should be implemented) 

State=3, Ready – all elements are OK

State=4, Wrng – any of elements is in Warning state

State=5, Error – any of elements is in Error state

State=6, Ignrd – node in Partitioned state



Extended display (to be discussed)
 A subdetector should provide a set of diagnostics tools 

started by a CommandItem 

MPD_DCS_DisplayCmd/<subdetector name>

 This should be an application running at the CDCS 
PC(?) or a web-page running AJAX script (?). The web 
server could be provided by a CDCS. Page content 
should be developed by the subdetector team and 
could be located at a common disk space

 Start parameters are defined in the CommandItem 
command content



Subdetector DCS (obligatory)

Run type name Subdetector  State
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HW Config name

Actual state

FSM:
If any subsystem in Off -> Off
If any subsystem in StdBy-> StdBy
If any subsystem in Error-> Error
…………………………………………………
If all subsystems in Rdy -> Rdy

Partitioning:
Remove part of a system from the 
common tree.
Works at level of a subdetector 
DCS and at level of a server



Subdetector DCS (optional)
Extra info to CDCS
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Extra parameters interface
“MPD_DCS_State/DAQ”, content=“3”

“MPD_DCS_State/DAQ/Subsystem1”, 
content=“3_value=XXX”

“MPD_DCS_State/DAQ/Subsystem1/Value1”, 
content=“3_XXXXX”

“MPD_DCS_State/FFD/Laser_power”, 
content=“-1”

“MPD_DCS_State/FFD/Laser_power/”, 
content=“-1_80%”

Extra info to display in the tree, defined by subsystem/subdetectorObligatory
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 Based on TCP/IP sockets
 Developed in 80-s at DELPHI experiment
 Main feature – converts hardware address space (IP 

+ port) to logical name address space -> components could 
migrate on computers

 Event-driven (real-time)
 Could have multiple name domains
 Open source
 Works on Windows, VMS, several Unix flavors (Linux, Solaris, 

HP-UX, Darwin, etc.) and the real time OSs: OS9, LynxOs and 
VxWorks

 Libraries for C, C++, Jawa, Delphi (Lazarus), Python
 A lot of debugging tools
 See https://dim.web.cern.ch/



How it works
 At startup every Server registers its services at DNS (DIM 

name server)

 Any Client could request a connection to a service, after 
that the client receives actual IP and port number for 
requested service (performed inside the DIM library)

 DIM establishes a TCP/IP connection Server-Client

 Further communication is done directly via TCP/IP sockets 
(Server-Client only)

 Pleasant bonus: If a Service contains a “description” 
then debugging tools could interpret TCP/IP buffer 
content to display in a human-readable way



Source code C++
DimService servint("TEST/INTVAL",ival);

DimService new_servint("new_TEST/INTVAL",boolval);

DimServer::start(newDns, "new_TEST");

if(!boolval) boolval=1; else boolval=0;

ival++;

servint.updateService();

new_servint.updateService();
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