


Concepts
 Modular, used defined interface (DIM + defined 

message format). 

 Extendable

 Modules could be replaced/modified

 As simple as possible (KISS – Keep It Stupidly Simple) 
and transparent

 For MPD experiment only (not generic)

 Based on DB to be used by MPD (PostgreSQL ?) 



Experiment DCS structure

FFD DCS TPC DCS DAQTOF DCS ECAL DCS

LV HV Laser

…………

Cooling …………

Shift leader

Predefined set of RUN types

RC/CDCS

S
er

ve
r

HW

C
li

en
t

C
li

en
t

C
li

en
t

C
li

en
t

Diagnostics 
tools

Command

State

Config DB

C
li

en
t

Command –> set run type
State – actual subdetector state

Off, StdBy, NotRdy,
Rdy, Wrng, Error,…

Run type DB



CDCS interface I
 RC/CDCS subscribes to published by subdetectors 

state InfoItems with names 

MPD_DCS_State/<subdetector name>

 Run configuration contains subdetectors list used in a 
run

 RC/CDCS sends run type name (text) to all 
CommandItems of subdetectors being in a list. 
CommandItems should have a name like

MPD_DCS_IniCmd /<Subdetector name>



CDCS interface II
 Each subdetector DCS root node could (should?) have 

a CommandItem with name

MPD_DCS_DisplayCmd/<subdetector node name>

A command received by this CommandItem should start 
diagnostic tool (see below)

 DAQ should have additional Info/Command items to 
provide vital information to/from the RC/CDCS (to be 
discussed with DAQ team)



CDCS interface III
 RC/CDCS has a CommandItem MPD_DCS_Messages to 

receive messages from subsystems/subdetectors

 Format of message should be like (to be discussed)
 <subdetector name>_<severity level>_<message text>

 <severity level> defines a way to process the message

 0 -> just to show in a window. Could be scrolled by messages 
arriving later

 1 -> stays at the screen until confirmed

 2 -> stays at the screen until confirmed + sound alarm if not 
confirmed during defined time (1 min as an example)

 3 -> stays at the screen until confirmed + instant sound alarm 

 All messages have a text content



How it could look like



States and colors
State=-1, Item does not have a state, no color to be 

displayed

State=0, OFF  - any of sub-elements does not respond

State=1, StdBy – any of sub-elements is in stand-by mode

State=2, NotRdy – any of element is in transition state 
(Time-out should be implemented) 

State=3, Ready – all elements are OK

State=4, Wrng – any of elements is in Warning state

State=5, Error – any of elements is in Error state

State=6, Ignrd – node in Partitioned state



Extended display (to be discussed)
 A subdetector should provide a set of diagnostics tools 

started by a CommandItem 

MPD_DCS_DisplayCmd/<subdetector name>

 This should be an application running at the CDCS 
PC(?) or a web-page running AJAX script (?). The web 
server could be provided by a CDCS. Page content 
should be developed by the subdetector team and 
could be located at a common disk space

 Start parameters are defined in the CommandItem 
command content



Subdetector DCS (obligatory)

Run type name Subdetector  State

Subdetector 
DCS

S
er

ve
r

S
er

ve
r

FSM
…

…
…

…

DB
Run type 
name to

HW configs

HW Config name

Actual state

FSM:
If any subsystem in Off -> Off
If any subsystem in StdBy-> StdBy
If any subsystem in Error-> Error
…………………………………………………
If all subsystems in Rdy -> Rdy

Partitioning:
Remove part of a system from the 
common tree.
Works at level of a subdetector 
DCS and at level of a server



Subdetector DCS (optional)
Extra info to CDCS

Subdetector 
DCS

S
er

ve
r

S
er

ve
r

…
…

…
…

Additional DISPLAY commands



Extra parameters interface
“MPD_DCS_State/DAQ”, content=“3”

“MPD_DCS_State/DAQ/Subsystem1”, 
content=“3_value=XXX”

“MPD_DCS_State/DAQ/Subsystem1/Value1”, 
content=“3_XXXXX”

“MPD_DCS_State/FFD/Laser_power”, 
content=“-1”

“MPD_DCS_State/FFD/Laser_power/”, 
content=“-1_80%”

Extra info to display in the tree, defined by subsystem/subdetectorObligatory

M
P

D
 s

ta
te

 i
s 

b
u

il
t 

u
si

n
g

 1
-s

t 
le

ve
l 

n
o

d
es





 Based on TCP/IP sockets
 Developed in 80-s at DELPHI experiment
 Main feature – converts hardware address space (IP 

+ port) to logical name address space -> components could 
migrate on computers

 Event-driven (real-time)
 Could have multiple name domains
 Open source
 Works on Windows, VMS, several Unix flavors (Linux, Solaris, 

HP-UX, Darwin, etc.) and the real time OSs: OS9, LynxOs and 
VxWorks

 Libraries for C, C++, Jawa, Delphi (Lazarus), Python
 A lot of debugging tools
 See https://dim.web.cern.ch/



How it works
 At startup every Server registers its services at DNS (DIM 

name server)

 Any Client could request a connection to a service, after 
that the client receives actual IP and port number for 
requested service (performed inside the DIM library)

 DIM establishes a TCP/IP connection Server-Client

 Further communication is done directly via TCP/IP sockets 
(Server-Client only)

 Pleasant bonus: If a Service contains a “description” 
then debugging tools could interpret TCP/IP buffer 
content to display in a human-readable way



Source code C++
DimService servint("TEST/INTVAL",ival);

DimService new_servint("new_TEST/INTVAL",boolval);

DimServer::start(newDns, "new_TEST");

if(!boolval) boolval=1; else boolval=0;

ival++;

servint.updateService();

new_servint.updateService();

N
e

w
d

at
a 

re
ad

y

P
u

b
li

sh
 N

e
w

d
at

a

C
re

at
e 

2 
In

fo
it

em
s

…………………………………………………………………………..

…………………………………………………………………………..


	Слайд 1, Central DCS / Run Control Concept
	Слайд 2, Concepts
	Слайд 3, Experiment DCS structure
	Слайд 4, CDCS interface I
	Слайд 5, CDCS interface II
	Слайд 6, CDCS interface III
	Слайд 7, How it could look like
	Слайд 8, States and colors
	Слайд 9, Extended display (to be discussed)
	Слайд 10, Subdetector DCS (obligatory)
	Слайд 11, Subdetector DCS (optional)
	Слайд 12, Extra parameters interface
	Слайд 13, Thank you for attention
	Слайд 14
	Слайд 15, How it works
	Слайд 16, Source code C++

