

FOR NUCLEAR RESEARCH

< □ > < □ > < □ > < □ > < □ > < □ >

1/33

April 25, 2024

Recent updates in dielectron analysis with MPD experiment

Sudhir Pandurang Rode*, Itzhak Tserruya

*LHEP, JINR, Russia and Weizmann Institute of Science, Rehovot, Israel.

April 25, 2024

XIII MPD Collaboration meeting

- Quick recap of the analysis so far
- The "Lost" electrons.
- Use of Machine learning approach for eID
 - Details of the classifiers
 - Training of the MC sample
 - Performance validation
 - Implementation in the dilepton analysis
- Next steps

• • = • • = •

Quick recap

Partially reconstructed spiral track

- With current track reconstruction algorithm, low $p_{\rm T}$ tracks are not reconstructed properly even though full hit information is available in the detector for tracks that enter the TPC ($p_{\rm T} > \approx 30$ MeV/c).
- Question is, in an ideal detector, what would be the maximum possible benefit in the combinatorial background (CB) reduction, if we were to detect these tracks.
- As per our principle study, potentially, there is about 5-8 factor improvement possible in CB rejection.

Quick recap: Analysis strategy

- \Rightarrow Three electron pools:
- $\rightarrow\,$ Pool-1 for fully reconstructed tracks^1 in fiducial area ($|\eta|$ < 0.3)
- $\rightarrow\,$ Pool-2 for fully reconstructed tracks in veto area 0.3 $<|\eta|<$ 1.0.
- $\rightarrow\,$ Pool-3 with tracks reconstructed in the TPC only.
 - Step 1 No further pairing (NFP): Tracks belonging to fully reconstructed π⁰ Dalitz are tagged and not used for further pairing.
 - Step 2 Close TPC cut (CTC): Track from Pool-1 in an event is paired with tracks from Pool-3 in the same event and both tracks are removed as a potential Dalitz pair if they have $M_{\rm inv} < 80 \text{ MeV}/c^2$ and opening angle < 10 degrees (this cut is opening angle dependent).
 - Step 3 Rest of the tracks with $p_{\rm T} > 200$ MeV from Pool-1 are paired among themselves to build ULS and LS pair spectra.

¹TOF matched tracks identified in the TPC and TOF < □ > < @ > < ≥ > < ≥ > ≤ = ∽ < <

Quick recap: Dielectron cocktail³

Before CTC	644.5	26285.2	0.024	7.8
After CTC	575.9	13317.7	0.043	12.2

- Due to limited satistics, signal is not U-L, but it is true reconstructed di-electron pairs.
- Close TPC cut approach improves S/B ratio by $\approx 75-80\% \rightarrow$ CB rejection by factor 2.
- Still significant improvement possible by improving the recognition of low p_{T} tracks.

²Background free equivalent - signal with same relative error as in background free situation ³TPC+TOF analysis

Quick recap

Total reconstructed tracks after close TPC cut:	1.69268e+06					
Below: Only Conversion and π^0 Dalitz sources are considered						
a. Track has Partner with pT < 35 MeV ($ \eta $ < 2.5):	419595 (~25%)					
b. Track has Partner inside TPC i.e. $35 \le pT \le 100$ MeV ($ \eta \le 2.5$):	580428 (~34%)					
c. Track has Partner with pT > 110 MeV ($ \eta $ < 2.5):	266075 (~16%)					
Track is hadron:	102041 (~6%)					
Rest (Signal (η, etc), conversion, π^{θ} Dalitz whose partner outside TPC,)	324536 (~19%)					

- Information (a.) is not available and therefore, it is lost.
- (b.) is recoverable upon improvement in reconstruction of turning tracks \rightarrow requires expert to look into algorithm.
- In principle, (c.), is recoverable too, at least partially. In this presentation, we look into two possibilities:
 - $\bullet~$ The track has not been reconstructed at all \rightarrow no trace $\rightarrow~$ "Lost" electrons.
 - Improve the efficiency as tracks may not have satistfied one of the selection cuts \rightarrow ML approach.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

Section I - The "Lost" electrons⁴

- This ratio of reconstructed electron tracks with Nhits in the TPC > 4 to the all generated tracks should be close to 1.
- Some electrons are "lost" as they do not leave any MC points in the TPC \rightarrow not "reconstructible".
- Effect propagates through different selection cuts and gives significantly less efficiency than what we should achieve.

⁴These numbers/analysis are using MPDROOT version: request 25 version of MPDROOT (commit b95c9cb8 on https://git.jinr.ru/nica/mpdroot/-/commits/massprod = = = <> <

Step by step demonstration: reconstruction efficiency

Primary e^{\pm} within $|\eta| <$ 1.0: Lost electrons

- \approx 15% of electrons do not leave MC points in the TPC hence not reconstruction of those electrons.
- This problem is not observed in other productions, only in Request 25 (use external pythia8 decayer).
- After reporting the problem, Alexander Zinchenko has fixed the issue in the MC track GEANT4 settings → next slides.

Problems with MCStack

Fix for M	CStack f	or GEAN	Г4.		Code ~
& Merged Alex	ander Zinchenko	requested to mer	ge stack	🖞 into 📴 5 days ago	
Overview 3	Commits 1	Pipelines 0	Changes	4	1 unresolved thread $~~\sim~$ \ddagger
Mar 24, 2024					
Fix for MCS Alexander	Stack for GEANT Zinchenko author	1. ed 5 days ago			9f84583f [0]

- The main problem was that with GEANT4 previous input settings the MCStack was not used for handling decay products, while it was used to put secondary particles in Pythia decayer.
- This may have affected the cascade decays, i.e., for example, π^0 -mesons from omegas. If the input setting "stackPopper" in g4Config.C is added, the stack starts to be used.
- In addition, due to usage of some internal variable to pass some information (which was overwritten by GEANT4), the particle with some index in the event (number 11) was lost.

Primary e^{\pm} within $|\eta| <$ 1.0 - pprox 6-8K Min. Bias UrQMD BiBi events

- For this study, the files in the commit shown in previous slides were added to the request 25 version of MPDROOT (commit b95c9cb8 on https://git.jinr.ru/nica/ mpdroot/-/commits/massprod).
- I have also updated the beam pipe geometry (air \rightarrow vacuum).
- Before fix: 6242 events.
- After fix: 7649 events.
- With new updates in the MCStack and GEANT4 settings, the issue of lost electrons due to external pythia decayer seems to have vanished.
- Before and after fix scenario MPDROOT version (one used for Request 25).
- Results with latest versions also show similar improvement (see the back up).

・ロ・ ・ 戸 ・ ・ ヨ ・ ・ ヨ ト ・ クタマ

Primary e^{\pm} within $|\eta| <$ 1.0 - pprox 6-8K Min. Bias UrQMD BiBi events

April 25, 2024 12 / 33

Improvement in the reconstruction efficiency

• For $0.2 < p_{\rm T} < 2 {\rm ~GeV/c.}$

Cuts	$Efficiency \pm Error$	${\sf Improvement} \pm {\sf Error}$
Nhits > 4	$0.820{\pm}0.008$	
-	$0.959{\pm}0.004$	$1.17{\pm}0.01$
Nhits > 39	$0.755{\pm}0.009$	
-	$0.882{\pm}0.006$	$1.17{\pm}0.01$
+ DCA cut	$0.712{\pm}0.010$	
-	$0.837{\pm}0.007$	$1.18{\pm}0.02$
+ TPC PID	$0.633{\pm}0.010$	
-	$0.753{\pm}0.009$	$1.19{\pm}0.02$
+ TOF Matching	$0.456{\pm}0.011$	
-	$0.541{\pm}0.010$	$1.19{\pm}0.03$
+ TOF PID	$0.462{\pm}0.011$	
-	$0.547{\pm}0.010$	$1.18{\pm}0.03$
+ ECAL Matching	$0.484{\pm}0.011$	
-	$0.576{\pm}0.010$	$1.19{\pm}0.03$
+ ECAL PID	$0.355{\pm}0.010$	
-	$0.427{\pm}0.010$	$1.20{\pm}0.04$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusions: Section I

- The issue of lost electrons in the TPC during Geant transport seems to have been fixed.
- The effect of this on the electron reconstruction and PID efficiency ($\approx 20\%$) is seen (Request 25 MPDROOT version).
- Similar effect is also seen with latest versions of MPDROOT⁵
- This is expected to have an effect on the dielectron analysis.
- If the agreement is reached, a new production for dielectrons with this fix is requested.

Thanks to <u>Alexander Zinchenko</u> for the discussions and fixing this issue.

Section II: Machine learning approach for eID

Total reconstructed tracks after close TPC cut:	1.69268e+06				
Below: Only Conversion and $\pi^{\scriptscriptstyle 0}$ Dalitz sources are considered					
a. Track has Partner with pT < 35 MeV ($ \eta $ < 2.5):	419595 (~25%)				
b. Track has Partner inside TPC i.e. $35 < pT < 100$ MeV ($ \eta < 2.5$):	580428 (~34%)				
c. Track has Partner with pT > 110 MeV ($ \eta $ < 2.5):	266075 (~16%)				
Track is hadron:	102041 (~6%)				
Rest (Signal (η, etc), conversion, π^{0} Dalitz whose partner outside TPC,) 324536					

- In principle, (c.), is recoverable too.
 - Improve the efficiency as tracks may not have satistfied one of the selection cuts \rightarrow ML approach.
- This is not only for the tracks in (c.) but tracks in (b.) as well. The improvement in the efficiency can help in enhancing the S/B, signal significance and background free equivalent signal.

Step-by-step efficiency using selection cuts

Machine Learning⁶

- The Machine learning can help in increasing the electron identification efficiency.
- Various algorithms are available, such as, neural networks, decision trees etc.
- TMVA package from cern ROOT library is utilized.
- It is user friendly and good starting point for the beginners.
- After initial study, Multi-Layer Perceptron (MLP) and Boosted Decision Tree (BDT) are employed for this study so far.

Neural Network: Multi-Layer Perceptrons (MLP)

- Helps to obtain quick predictions after the training and the same accuracy ratio with large as well as small data.
- In TMVA, all neural networks are feed-forward Multilayer Perceptrons.
- Training method: Back-Propagation (BP).

 $\begin{array}{c} \underbrace{(\text{Bias})1^{j'}} \\ \text{Can be used to solve complex non-linear problems.} \\ \text{Works well with both small and large input data.} \\ & \alpha: x \rightarrow \begin{cases} x & \text{Lancur,} \\ \frac{1}{1+e^{-kx}} & \text{Sigmoid,} \\ \frac{e^x - e^{-x}}{e^x + e^{-x}} & \text{Tanh,} \\ e^{-x^2/2} & \text{Radial.} \end{cases}$

April 25, 2024

18/33

Decision Tree: Boosted Decision Tree (BDT)

- A decision tree takes a set of input features and splits input data recursively based on those features.
- Nodes: Place where Data is split.
- Leaves: Represent a class label or probability.
- Each split at a node is chosen to maximize information gain or minimize entropy.
- The splits are created recursively → the process is repeated until some stop condition is met.
- Boosting is a method of combining many weak learners (trees) into a strong classifier.
- Adaptive boost is used in this work.

Details

- All charged tracks with DCA $< 3\sigma$ and matched in TOF ($< 2\sigma$ of d ϕ and dz) and ECal ($< 3\sigma$ of d ϕ and dz) $\rightarrow e^{\pm}$ (Signal) and Rest (Background).
- Three samples:
 - Sample 1: Training.
 - Sample 2: Overtraining test.
 - Sample 3: Performance validation.
- Sample 1 and 2 are of equal size with actual proportion of Signal (284K) and Background (47M) each, respectively.
- The Kolmogorov Smirnov test provides a *p*-value⁷ equal to the statistical probability that two samples are drawn from the same distribution.

⁷The smaller the *p*, the greater the overtraining. Since the training and testing samples will never be identical, a very small degree of overtraining may be unavoidable. As a rule of thumb, it is recommended to try to reduce overtraining if p < 0.01, especially if the separation is visibly poorer for the testing samples than for the training samples.

Input variables

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

April 25, 2024 21 / 33

Input variables

April 25, 2024 22 / 33

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Correlation matrices: e^{\pm} (Signal) and Rest (Bkg)

Correlation Matrix (background)

Correlation Matrix (signal)

- Almost all variables for signal are independent.
- In case of background, there is correlation among some variables, for instance, dEdx and Tofbeta.

ELE NOR

Response with Prior DCA 3 σ cut; All e^{\pm} (Signal) and Rest (Bkg)

Performance validation using test sample

- Response with Prior DCA 3σ cut; All e^{\pm} (Signal) and Rest (Bkg).
- Response for actual proportion of signal and background in the test sample.
- Clear separation between signal and background by both classifiers.

ELE DOG

A 回 > < 三 >

Efficiency and Purity: e^{\pm}

- <u>Denominator</u>: All generated e[±] tracks (PR < 2 cm).
- <u>Numerator</u>: + Response cut.
- Purity: All e^{\pm} to charged tracks with DCA < 3σ matched in TOF and ECAL within Response cut.
- With momentum dependent selection of response, purity as good as 1D cuts (analysis selection cuts) and better efficiency can be achieved.

Implementation of Machine learning results in pair analysis: \approx 21M events

三日 のへの

- MLP is performing better at higher momenta.
- Significant improvement in the efficiency.
- Purity with MLP matches with the 1D cuts.
- BDT: response > 0.13.
- MLP: momentum dependent, for p < 1.0, response > 0.85, $1.0 , response > 0.7, <math>1.15 , response > 0.6, <math>1.25 , response > 0.5, <math>1.5 , response > 0.2 upto p > 1.75, response > 0.12 <math>\rightarrow$ smoothening required.

Analysis strategy (slightly updated) - Reminder

- \Rightarrow Three electron pools:
- $\rightarrow\,$ Pool-1 for fully reconstructed tracks^8 in fiducial area ($|\eta|<$ 0.3)
- $\rightarrow\,$ Pool-2 for fully reconstructed tracks in veto area 0.3 $<|\eta|<$ 1.0.
- $\rightarrow\,$ Pool-3 with tracks not matched/identified in the TOF.
 - Step 1 No further pairing (NFP): Tracks belonging to fully reconstructed π^0 Dalitz are tagged and not used for further pairing.
 - Step 2 Close TPC cut (CTC): Track from Pool-1 in an event is paired with tracks from Pool-3 in the same event and both tracks are removed as a potential Dalitz pair if they have $M_{\rm inv} < 80 \text{ MeV}/c^2$ and opening angle < 10 degrees (No opening angle dependent selection).
 - Step 3 Rest of the tracks with $p_{\rm T} > 200$ MeV from Pool-1 are paired among themselves to build ULS and LS pair spectra.

⁸TOF and ECal matched tracks identified in the TPC, TOF and ECal ABA BE SAC

Cocktail after No further pairing (NFP) using BDT & MLP (Fid. < 0.3)

313 DQC

イロト イボト イヨト イヨト

Cocktail after Close TPC Cut $(CTC)^9$ using BDT & MLP (Fid. < 0.3)

 9 Here, along with TPC only, tracks matched in ECal but not in the TOF are also included \sim \sim

Following values are estimated in the invariant mass between 0.2 to 1.5 GeV/c \rightarrow 1) Fiducial region is $|\eta|$ <0.3.

		1D cuts			BDT			MLP	
	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC
U	12425±111	9124±96	4355±66	29733±172	18502±136	8250±91	29865±173	18510 ± 136	8223±91
В	12580±112	9236±96	4411±66	29026±170	17884±134	8093±90	29105±171	17765±133	7991±89
U-B	-156±158	-112±136	-55±94	706±242	619 ± 191	157±128	760±243	746±190	233±127
(U-B)/B	-0.012±-0.000	-0.012 ± -0.000	-0.013 ± -0.000	0.024±0.000	$0.035 {\pm} 0.001$	$0.019 {\pm} 0.001$	0.026±0.001	$0.042{\pm}0.001$	0.029 ± 0.001
BFE	1.0±1.0	0.7±0.8	0.3±0.6	8.5±2.9	10.5±3.2	1.5 ± 1.2	9.8±3.1	15.3±3.9	3.3±1.8
S	219	214	188	420	405	356	453	439	386
S/B	0.017	0.023	0.043	0.014	0.023	0.044	0.016	0.025	0.048
BFE	1.9	2.5	3.9	3.0	4.5	7.7	3.5	5.4	9.1

<ロ> <四> <日> <日> <日> <日> <日> <日> <日</p>

Following values are estimated in the invariant mass between 0.2 to 1.5 GeV/c \rightarrow 1) Fiducial region is $|\eta|$ <0.3.

		1D cuts			BDT			MLP	
	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC
U	12425±111	9124±96	4355±66	29733±172	18502±136	8250±91	29865±173	18510±136	8223±91
В	12580±112	9236±96	4411±66	29026±170	17884±134	8093±90	29105±171	17765±133	7991±89
U-B	-156±158	-112±136	-55±94	706±242	619 ± 191	157±128	760±243	746±190	233±127
(U-B)/B	-0.012±-0.000	-0.012 ± -0.000	-0.013 ± -0.000	0.024±0.000	$0.035 {\pm} 0.001$	$0.019 {\pm} 0.001$	0.026±0.001	$0.042{\pm}0.001$	0.029 ± 0.001
BFE	1.0±1.0	0.7±0.8	0.3±0.6	8.5±2.9	10.5±3.2	1.5 ± 1.2	9.8±3.1	15.3±3.9	3.3±1.8
S	219	214	188	420	405	356	453	439	386
S/B	0.017	0.023	0.043	0.014	0.023	0.044	0.016	0.025	0.048
BFE	1.9	2.5	3.9	3.0	4.5	7.7	3.5	5.4	9.1

2) Fiducial region is $|\eta| < 0.7$.

		1D cuts			BDT			MLP	
	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC
U	69353±263	52668±229	23152±152	159160±399	102969±321	42979±207	157799±397	101350 ± 318	42065±205
В	68820±262	52105±228	22590±150	157019±396	101008 ± 318	41661±204	155322±394	98945±315	40583±201
U-B	533±372	563±324	562±214	2141±562	1961±452	1318 ± 291	2477±560	2405±448	1482±287
(U-B)/B	0.008±0.000	$0.011 {\pm} 0.000$	0.025 ± 0.000	0.014 ± 0.000	$0.019 {\pm} 0.000$	$0.032{\pm}0.001$	0.016 ± 0.000	$0.024{\pm}0.000$	$0.037 {\pm} 0.001$
BFE	2.1±1.4	3.0±1.7	6.9±2.6	14.5±3.8	18.8±4.3	20.5±4.5	19.6±4.4	28.9±5.4	26.6±5.2
S	1288	1266	1123	2482	2417	2056	2568	2494	2122
S/B	0.019	0.024	0.050	0.016	0.024	0.049	0.017	0.025	0.052
BFE	11.9	15.2	27.3	19.5	28.6	49.5	21.1	31.0	54.1

Following values are estimated in the invariant mass between 0.2 to 1.5 GeV/c \rightarrow 1) Fiducial region is $|\eta|$ <0.3.

		1D cuts			BDT			MLP	
	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC
U	12425±111	9124±96	4355±66	29733±172	18502±136	8250±91	29865±173	18510±136	8223±91
В	12580±112	9236±96	4411±66	29026±170	17884±134	8093±90	29105±171	17765±133	7991±89
U-B	-156±158	-112±136	-55±94	706±242	619 ± 191	157±128	760±243	746±190	233±127
(U-B)/B	-0.012±-0.000	-0.012 ± -0.000	-0.013 ± -0.000	0.024±0.000	$0.035 {\pm} 0.001$	$0.019 {\pm} 0.001$	0.026±0.001	$0.042{\pm}0.001$	0.029 ± 0.001
BFE	1.0±1.0	0.7±0.8	0.3±0.6	8.5±2.9	10.5±3.2	1.5 ± 1.2	9.8±3.1	15.3±3.9	3.3±1.8
S	219	214	188	420	405	356	453	439	386
S/B	0.017	0.023	0.043	0.014	0.023	0.044	0.016	0.025	0.048
BFE	1.9	2.5	3.9	3.0	4.5	7.7	3.5	5.4	9.1

2) Fiducial region is $|\eta| < 0.7$.

		1D cuts			BDT			MLP	
	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC
U	69353±263	52668±229	23152±152	159160±399	102969 ± 321	42979±207	157799±397	101350 ± 318	42065±205
В	68820±262	52105±228	22590±150	157019±396	101008 ± 318	41661±204	155322 ± 394	98945±315	40583±201
U-B	533±372	563±324	562±214	2141±562	1961±452	1318 ± 291	2477±560	2405±448	1482±287
(U-B)/B	0.008±0.000	$0.011 {\pm} 0.000$	$0.025 {\pm} 0.000$	0.014 ± 0.000	$0.019 {\pm} 0.000$	$0.032{\pm}0.001$	$0.016 {\pm} 0.000$	$0.024{\pm}0.000$	0.037±0.001
BFE	2.1±1.4	3.0±1.7	6.9±2.6	14.5±3.8	18.8±4.3	20.5±4.5	19.6±4.4	28.9±5.4	26.6±5.2
S	1288	1266	1123	2482	2417	2056	2568	2494	2122
S/B	0.019	0.024	0.050	0.016	0.024	0.049	0.017	0.025	0.052
BFE	11.9	15.2	27.3	19.5	28.6	49.5	21.1	31.0	54.1

• At no further pairing step, S/B ratio remains similar for all three cases.

• Background free equivalent signal seems to have improved.

After Close TPC cut, hint of improvement in S/B ratio using MLP and BDT.

Conclusions and Next steps: Section II

- Machine learning seems to be improving the PID efficiency.
- Enhancement in the background free equivalent signal, keeping S/B unchanged after no further pairing.
- Hint of improvement in the S/B after close TPC cut.
- Extend training to TPC only as well as TPC + ECal samples to further improve the S/B and significance.
- Optimise response cut for best efficiency and purity.
- Momentum differential training of the MC sample.

Thanks to Igor Rufanov for the discussions.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

BACK-UP

・ロト < 団ト < ヨト < ヨト < ヨト < ロト

MLP and BDT

MLP	Training	Hidden	Neuron activation	Neuron input
	cycles	layers	function type	function type
	600	1 (N+5)	tanh	sum

BDT	NTrees	BoostType	AdaBoostBeta	Max Depth
	850	AdaBoost	0.5	3

Details

- For this study, the files in the commit shown in these slides were added to the March 24, 2024 version of MPDROOT (commit 9f84583f on https://git.jinr.ru/nica/mpdroot/-/commit/ 9f84583fe2c2544d3bcad1739bf0fbf6104e5dc9).
- And this version is used to get these results.
- I have also updated the beam pipe geometry (air \rightarrow vacuum).
- For before fix scenario: March 18, 2024 version of MPDROOT (commit aa3dfb40 on https://git.jinr.ru/nica/mpdroot/-/ commit/aa3dfb40011f813366964321eb8be754cb06621a).
- Before fix: 6264 events.
- After fix: 7715 events.

Primary e^{\pm} within $|\eta| <$ 1.0 - pprox 6-8K Min. Bias UrQMD BiBi events

• With new updates in the MCStack and GEANT4 settings, new issue of lost electrons due to external pythia decayer seem to have vanished.

→ ∃ →

Primary e^{\pm} within $|\eta| <$ 1.0 - pprox 6-8K Min. Bias UrQMD BiBi events

April 25, 2024 5 / 23

Improvement in the reconstruction efficiency

• For $0.2 < p_{\rm T} < 2 {\rm ~GeV/c.}$

Cuts	$Efficiency \pm Error$	${\sf Improvement} {\pm} {\sf Error}$
Nhits > 4	0.824 ± 0.008	
-	$0.967 \pm\ 0.004$	$1.17\pm$ 0.01
Nhits > 39	0.749 ± 0.009	
-	$0.889 \pm\ 0.007$	$1.19\ {\pm}0.01$
+ DCA cut	$0.708 \pm \ 0.009$	
-	$0.833 \pm\ 0.008$	$1.18\pm$ 0.02
+ TPC PID	$0.629 \pm\ 0.009$	
-	$0.743 \pm\ 0.010$	1.18 ± 0.02
+ TOF Matching	$0.454 \pm\ 0.010$	
-	$0.528 \pm\ 0.011$	1.16 ± 0.03
+ TOF PID	$0.460 \pm\ 0.010$	
-	$0.533 \pm \ 0.011$	$1.16{\pm}~0.03$
+ ECAL Matching	$0.483 \pm\ 0.010$	
-	$0.555\pm\ 0.011$	1.15 ± 0.03
+ ECAL PID	$0.358 \pm \ 0.010$	
-	$0.406\pm\ 0.011$	$1.14\pm$ 0.04

Effect on multiplicities of electron sources

• Average multiplicities for $p_{
m T}>$ 200 MeV/c per 100 events ($|\eta|<$ 1.0 and produced within 2 cm)

	Cuts	Average Multiplicity \pm Error	${\sf Improvement} \pm {\sf Error}$
Before Fix	π^0 -Dalitz	11.12±0.38	
After Fix	π^0 -Dalitz	$13.60{\pm}0.47$	$1.22{\pm}0.06$
Before Fix	η -Dalitz	$1.28{\pm}0.13$	
After Fix	η -Dalitz	$1.15{\pm}0.14$	$0.90{\pm}0.14$
Before Fix	$ ho^0$	$0.03{\pm}0.02$	
After Fix	$ ho^0$	$0.1{\pm}0.04$	3.33±2.59
Before Fix	ω	0.23±0.06	
After Fix	ω	$0.14{\pm}0.05$	$0.61{\pm}0.27$
Before Fix	γ	$2.58{\pm}0.18$	
After Fix	γ	$2.17{\pm}0.19$	$0.84{\pm}0.1$

Contribution from conversions before beam pipe despite using updated geometry \rightarrow needs cross-check.

イロト (母) (ヨ) (ヨ) (ヨ) (の)

Problems with MCStack

Image Alerged Alerged Overview 3 Mar 24, 2024 Fix for Alerged Fix for Alerged Fix for Alerged Alexande Fix for Alerged • b gconfig/N • fix for Alerged • 0 gconfig/N • 11 12 10 11 11 12 • b gconfig/N • fix for Alerged • 11 12 • 28 28 29 29 30 30	exander Zinchenko requested to merge stack (\$ into dev 5 days ago Commits 1) Pipelines (a) Changes (4) CStack for GEANT4. Tr Zinchenko authored 5 days ago MpdDecayConfig.txt (\$ - 6, 6 4, 7 (@) Secess are changle separators.	1 ur +1 -0 💭 View file (nresolved thread م ب : 9f84583f ြ @ 9f84583f
Overview 3 Aar 24, 2024 Fix for Muse Fix for Muse Alexande • • • • geonfig/N Alexande • • • • • • • • • • • • • • • • • • •	Commits Pipelines © Changes 4 CStack for GEANT4. ar Zinchenko authored 5 days ago	1 ur +1 -0 💭 View file	nresolved thread ۲۰۰۰ : 9f84583f گ @ 9f84583f
Year 24, 2024 Fix for MM Fix for MM Alexander Alexander Bix for MM * B geonfig/IV * B geonfig/IV * 0	ICStack for GEANT4. r Zinchenko authored 5 days ago MpdDecayConfig.txt گو المرح مرح مرح مرح مرح مرح مرح مرح مرح مرح	+1 -0 D View file (9f84583f
Fix for MM Alexande 2 g goontlg/M Alexande	CStack for GEANT4. r Zinchenko authored 5 days ago MpdDecayConfig.ttt (%) - 6, 6 + 6, 7 (%) Seces are chanel, separators.	+1 -0 💭 View file (9f84583f
 ▶ geonfig/N 6 6 # 7 7 8 8 9 4 9 10 11 42 43 11 12 43 28 29 28 29 29 30 30 	MpdDecayConfig.txt (b) - 6, 6 + 6, 7 (0) Saces are chanel separators.	+1 -0 D View file	@ 9f84583f
(@@ 6 6 6 # 7 7 # 9 10 #1 10 11 #2 #3 → B gcorfig/g (@ 28 28 29 29 29 29	0 -6,6 +6,7 00 Spaces are channel separators.		
6 6 6 <i>#</i> 7 7 <i>#</i> 8 8 <i>#</i> 9 10 <i>#</i> 1 10 11 <i>#</i> 2 11 12 <i>#</i> 2 @@ 28 28 29 29 29 29 30 30	Spaces are channel separators.		
7 7 7 <i>#</i> 8 8 8 <i>#</i> 9 10 <i>#</i> 1 10 11 <i>#</i> 2 11 12 <i>#</i> 3 ✓ D gconf <i>y</i> /g (02 28 28 29 29 30 30			
8 8 # 9 10 #1 10 11 #2 11 12 #3 ✓ B gconflg/g @@ 28 28 @ 28 28 30 30 30	":*" means inclusive decay modes, i.e. affected only the channels		
9 + # 9 10 #1 10 11 #2 11 12 #3 ~ ☑ gconfig/g 00 28 28 29 29 30 30	explicitly mentioned		
9 10 #1 10 11 #2 11 12 #3 ✓ gconfig/g 00 28 28 29 29 30 30	If mother particle differs from anti-particle, the particle should be used		
10 11 #2 11 12 #3 →	113:* 113:11:-11:×1		
11 12 #3 → gconfig/g 00 28 28 29 29 38 30	223:* 223:11:-11:x1 223:111:11:-11:x1		
 gconfig/g 28 28	333:* 333:11:-11:x1 333:221:11:-11:x1		
28 28 29 29 30 30	J4Config.C [^A _C] 100755 → 100644	+2 -1 💭 View file (@ 9f84583f
28 28 29 29 30 30			
29 29 30 30	//TG4RunConfiguration* runConfiguration		
30 30	<pre>//= new TG4RunConfiguration("geomRoot", "FTFP_BERT", "stepLimiter-</pre>	+specialCuts");	
	TG4RunConfiguration* runConfiguration		
31 -	<pre>= new TG4RunConfiguration("geomRoot", "FTFP_BERT+optical");</pre>		
31 +	<pre>//AZ-240324 = new TG4RunConfiguration("geomRoot", "FTFP_BERT+</pre>	+optical");	
32 +	= new TG4RunConfiguration("geomRoot", "FTFP_BERT+optical", "stepLimiter	r+stackPopper"); //AZ-240324	
32 33			
33 34 //	// Create the G4 VMC		
34 35		figuration);	
	TGeant4* geant4 = new TGeant4("TGeant4", "The Geant4 Monte Carlo", runCont		▶ ★ 重 1

April 25, 2024 8 / 23

= 990

Response with Prior DCA 3 σ cut; All e^{\pm} (Signal) and Rest (Bkg)

Cocktail after No further pairing (NFP) using BDT & MLP (Fid. < 0.7)

31= 990

イロト 不良 トイヨト イヨト

Cocktail after Close TPC Cut $(CTC)^{10}$ using BDT & MLP (Fid. < 0.7)

 10 Here, along with TPC only, tracks matched in ECal but not in the TOF are also included a \sim

Cocktail after No further pairing (NFP) using BDT & MLP (Fid. < 0.3)

April 25, 2024 12 / 23

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Cocktail after Close TPC Cut $(CTC)^{11}$ using BDT & MLP (Fid. < 0.3)

 11 Here, along with TPC only, tracks matched in ECal but not in the TOF are also included are

Cocktail after No further pairing (NFP) using BDT & MLP (Fid. < 0.7)

April 25, 2024 14 / 23

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Cocktail after Close TPC Cut $(CTC)^{12}$ using BDT & MLP (Fid. < 0.7)

 12 Here, along with TPC only, tracks matched in ECal but not in the TOF are also included a \sim

Following values are estimated in the invariant mass between 0.2 to 1.5 GeV/c \rightarrow 1) Fiducial region is $|\eta|$ <0.3.

		1D cuts			BDT			MLP	
	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC
U	12412±111	9150±96	4379±66	29733±172	18750±137	8394±92	29873±173	18770±137	8373±92
В	12568±112	9261±96	4428±67	29026±170	18121±135	8232±91	29114±171	18028±134	8141±90
U-B	-157±158	-111±136	-49±94	706±242	629±192	163±129	759±243	742±192	231±129
(U-B)/B	-0.012±-0.000	-0.012 ± -0.000	-0.011 ± -0.000	0.024±0.000	$0.035 {\pm} 0.001$	$0.020 {\pm} 0.001$	0.026±0.001	$0.041{\pm}0.001$	$0.028 {\pm} 0.001$
BFE	1.0±1.0	0.7±0.8	0.3±0.5	8.5±2.9	10.7±3.3	1.6 ± 1.3	9.8±3.1	15.0 ± 3.9	3.2±1.8
S	219	214	188	420	406	357	453	440	387
S/B	0.017	0.023	0.043	0.014	0.022	0.043	0.016	0.024	0.047
BFE	1.9	2.4	3.9	3.0	4.5	7.6	3.5	5.3	9.0

2) Fiducial region is $|\eta| < 0.7$.

		1D cuts			BDT			MLP	
	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC	Before NFP	After NFP	After CTC
U	69388±263	52925±230	23324±153	159160±399	104337±323	43753±209	157735±397	102707±320	42818±207
В	68851±262	52368±229	22769±151	157019±396	102367±320	42392±206	155256±394	100276±317	41306±203
U-B	537±372	558±324	555±215	2141±562	1970 ± 455	1361 ± 294	2479±559	2431 ± 451	1511±290
(U-B)/B	0.008±0.000	$0.011 {\pm} 0.000$	$0.024 {\pm} 0.000$	0.014 ± 0.000	$0.019 {\pm} 0.000$	$0.032{\pm}0.001$	0.016 ± 0.000	$0.024{\pm}0.000$	0.037±0.001
BFE	2.1±1.4	3.0±1.7	6.7±2.6	14.5±3.8	18.8±4.3	21.5±4.6	19.6±4.4	29.1±5.4	27.1±5.2
S	1288	1266	1123	2482	2420	2058	2567	2497	2123
S/B	0.019	0.024	0.049	0.016	0.024	0.049	0.017	0.025	0.051
BFE	11.9	15.1	27.0	19.5	28.3	48.8	21.0	30.7	53.2

- At no further pairing step, S/B ratio remains similar for all three cases.
- Background free equivalent signal seems to have improved.
- \bullet After Close TPC cut, hint of improvement in S/B ratio using MLP and BDT.

April 25, 2024 16 / 23

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Request $25 \rightarrow 11M$ events

$\rightarrow\,$ Fully reconstructed tracks: Pool 1

- |Vz| < 100 cm.
- DCA x,y,z < 3σ.
- Nhits > 39
- TPC nSigma -2 to 2 sigma at p=0 and -1 to 2 sigma for $p>800\ MeV/c2.$
- TOF nSigma -2 to 2 sigma
- TOF matching -2 to 2 sigma
- Limiting the eta acceptance of the reconstructed track to 0.3
- $\rightarrow\,$ Cuts on Partner: Pool 2
 - Same as Pool 1 except in 0.3 $<\eta<$ 1.0
- $\rightarrow\,$ Cuts on Partner for Close TPC Cut: Pool 3
 - $|\eta| <$ 2.5, Nhits < 10
 - DCA < 3.5 sigma
 - ITPC nSigma| < 2 sigma, Those tracks who DO NOT Matched in TOF within 2 Sigma (TPC ONLY).

April 25, 2024

17 / 23

Analysis Selection Cuts vs Machine Learning

Steps	1D Cuts	Machine Learning	
Denominator OR	$DCA < 3\sigma$	$DCA < 3\sigma$	
Input Sample	Tracks matched in	Tracks matched in	
	TOF and ECAL	TOF and ECAL	
Numerator/Step 2	1D cuts	Train the model and test	

Efficiency in ML = $\frac{\text{No of primary } e^{\pm s} \text{ after response cut}}{\frac{\text{No of } e^{\pm s} \text{ in the input sample with DCA} < 3\sigma + |\eta| < 1.0 + \text{PR} < 2.0 \text{ cm}}{3\sigma + |\eta|}$

Efficiency in 1D cuts = $\frac{\text{No of primary } e^{\pm s} \text{ after selection cuts}}{\text{No of } e^{\pm s} \text{ in the input sample with DCA} < 3\sigma + |\eta| < 1.0 + PR < 2.0 \text{ cm}}$

<ロト < 団ト < 三ト < 三ト 三日 < つへの</p> April 25, 2024

18 / 23

Efficiency: Primary e^{\pm}

• Denominator: All e^{\pm} tracks (PR < 2 cm) with DCA < 3σ and matched in TOF and FCAL

- Numerator: + Response cut
- Denominator is same in both 1D cuts and machine learning.
- Benefit is that the inefficiency due to cuts on Nhits, TPC, TOF and ECAL is reduced with negligible comprise on the purity.

19/23

• However, the conversion contribution is more here because the Positron efficiency has increased. A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A JIN NOR - (E April 25, 2024

p dependent BDT Response with Prior DCA 3 σ cut; All e^{\pm} (Signal) and Rest

April 25, 2024 20 / 23

p dependent MLP Response with Prior DCA 3 σ cut; All e^{\pm} (Signal) and Rest

April 25, 2024 21 / 23

p dependent BDT Response with Prior DCA 3 σ cut; All e^{\pm} (Signal) and Rest

April 25, 2024 22 / 23

Problems with MCStack

~ 🖻) simu	lation/generators/mpdGen/MpdDecayerPyt8.cxx $[^{6_1}_{\square}$	+2 -1 🗘 View file @ 9f84583f
00	00	<pre>fPapab = shappal bDatis();</pre>	
00	00	- channet.bkacto(),	
89	89		
90	90	// Random number generator	
91		- fRandom = new TRandom(A): // time-dependent seed	
1.0	01	// AZ 22022/ (Deader - per TDeader(0); // time dener	adapt and
	AT.	+ // A2-220324 JRanaom = new IRanaom(0); // Cime-depen	nuent seeu
	92	+ fRandom = new TRandom(1); // AZ-220324 time-independ	ident seed
92	93	// fRandom = gRandom;	
93	94		
94	95	// fPyth1a8->Pyth1a8()->particleVata.1skesonance(113	.3,KIRUEJ;
simula	rlien/mc51a	ekMpdSteck.cox 🗄 +23 -17 💭 View file () 91945831	- D simulation/molitaek/Mpelitaek.cox D +23 -17 🖸 View file (21
			101 104 void #pditack::PushTrack(Int_t toBelose, Int_t parentId, Int_t pdpEode, Double_t px, Double_t py, Double_t p
	for	(Int_t j = 0; j < npart; ++j) {	226 227
135		TParticle tpart = +((TParticle +)fBecays->Unchecked#t(j));	227 228 for (lst_t j = 0; j < spart; ++j) {
		// tpert.Print();	220 220 1# (5 == 0) {
		v0ecays.push_back(tpart))	20 - particle vactors and a subre article
130)		250 // AZ-200324 particle->SetStatumEode(12); // decayed particle
1.59	for	(lat t i = 0: i < mart: ++1) / // skis anthen particle	231 - partite-setBaugeter(0, 11): // AC-2003/c second partitle 200 - partite-setBaugeter(0, 11): // AC-2003/c second partitle
		1f (j == 0) (221 225 }
		particle->SetStatusCode(11); // decound particle	232 234 // Thurtisle +part = (Thurtisle+) fdecaysHusheckeest(j);
		continue; // skip mother particle // AF-TMATTA anotista-participation/11); // decement contiste	233 235 TFarticle spart = 6vteravs[j]:
		particle-SetDaughter(0, 11); // A2-200320 decoyed porticle	235 - if ("String(GK-SetHame()) == "Tearti") toD = 0:
144 -		continue: // skip mother particle	236 - // PoshTraskItadedone, trackId, part->etPhycose(),
		} // TRoofista assat = /TRoofistes] #Decour-sinchesmontf(())	237 * // #2-218226 if (Tstring(pHt-verthame()) == "TSmant4") toDu = 0;
		<pre>TParticle epart = &vdecays(j);</pre>	200 T // prostrock(concere, trackid, part-sferfo)Code(), 201 200 PostTrack(tobe, trackid, part-sferfo)Code(), part-sfer(), part-sfer(), part-sfer(), part-sfer(), part-sfer().
248		Int,t toDe = 1;	99x(),
		if (Tstring(gMC->detName()) == "TBeant4") tobs = 0;	238 240 part-weyD, part-weyD, time, pate, pate, proc, str, weight, is);
			227 241 F 288 - If (sarentite s 0) #RPrimaries +s (neart - 1): // treat series enderts as originaries (dirty trias)
150 -		// PushTrack(taBelone, trackId, part->WetPdgCade(),	242 * // #2-20020 if (parentld < 0) fBPrimaries += (spart - 1); // treat decay products as primaries (dirty
101	NWO.	Publicharton, tracka, part-Hetroponeu, part-Heu, part-Hu), part-Hu), part-HerrayO, part-	241 243 } etse {
152		part-wy(), part-wz(), time, potx, poty, potz, proc, etc, weight, is);	243 245 if (toBeDone == 1) fStack.pumb(particle);
	- F		(0 -270,6 +272,7 00 Therticle +5p0Stack::PopNextFrack(int_t &iTrack)
	1f	<pre>(parentis < 0) favringries ** (part - 1); // treat secon products as princiles (dirty trick) #2-300308(if (serentis < 0) (#Pringries ** (coart - 1); // treat decay products of princiles (dirty trick)</pre>	273 272 (CurrentTrack = thisParticle->GetStatusEade();
) else		272 276
156		> Push particle on the stack if tobeDane is set	275 - if (thisParticle->GetBaughter(0) == 11) reture (TParticle +)URL; // #2-220524
150	1 10	(teenone == 1) Fitzek.pubr(particle);	273 276 return thisPorticle;
159			273 276 // ····
160		Push particle on the stock if tededone is set	00 -298,7 +101,8 00 TParticle +Mpditack::PupPrimaryForTracking(Int_t iPrim)
	1/ 42	1/ (topegane ii 1) fitack.push(particle); 1/ (topegane ii 1) fitack nuch(particle):	294 301 Fatal("#pdStack::PapPrimaryForTracking", "Wet a primary track");
	F	, (477 996 7
163			

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖圖 釣ぬ⊙