

XIII Collaboration Meeting of the MPD Experiment at the NICA Facility

Simulation of a Mini Beam Beam detector for the MPD.

Ivonne Maldonado

April 24th, 2024

- 1. Introduction
- 2. MiniBeBe New Geometry
- 3. DataSet description
- 4. Results
- 5. Summary

Introduction

- MiniBeBe detector was proposed as a wake-up trigger for TOF detector.
- Should be efficient for low multiplicity events like p+p, p+A and A+A.
- Geometry of detector has been suffered several changes from its original design, to be adapted to the Inner Barrel of ITS, a coaxial cylinder of 312 mm of diameter.
- Designed to be used only in Phase o

MiniBeBe - Geometry

It consist on 8 H-shaped rails.

Each rail contains **20 plastic scintillators EJ232** – 20x20x5 mm³ ≫

Sensitive area (-30, 30) cm

With two **SiPM Hamamatsu S13360-PE** at each side 3.07x3.07 mm²

Fixed between PCB and Carbon Fiber cold plates (same of ITS)

Electronic boards 800 mm length, 100 mm width

MiniBeBe - Geometry

It consist on 8 **H-shaped** rails.

Each rail contains **20 plastic scintillators EJ232** – 20x20x5 mm³

With two **SiPM Hamamatsu S13360-PE** at each side 3.07x3.07 mm²

Fixed between PCB and Carbon Fiber cold plates (same of ITS)

Electronic boards 800 mm length, 100 mm width

perspective view

Position in the MPD experiment

Interaction of Particles with Plastic Scintillators

Plastic scintillators are distributed uniformly along z-axis between -30 to 30 cm.

8 scintillators at each z-position

We estimate the probability that exist at least 1 MbbPoint at each ring (each z position)

Data sets analyzed

• 5M events of p + p, 200k events of Xe + Xe and 1M events of Bi +Bi collisions at $\sqrt{s} = 9.2$ GeV with PHSD generator

• Primary vertex smearing $\sqrt{\sigma_z} = 50$ cm for Trigger Efficiency

• No Primary vertex smearing for Energy loss at plastic scintillators – to estimate threshold energy \gg BOX generator for μ , PHSD for π

Energy deposition at each ring

Threshold energy – $E_{Loss} = 0.839$ MeV for μ , similar value for π

Energy deposition at each ring

Xe+Xe collisions, Probability to 1 hit as a function of z - position

Probability to have 1 hit at each ring per event - XeXe $\sqrt{s_{NN}} = 9.2 \text{ GeV}$

At least one charged MbbPoint at each ring, for events with different impact parameter

Trigger Efficiency as a function of Impact Parameter for Xe+Xe

p+p collisions, Probability to 1 hit as a function of z - position

Probability to have 1 hit at each ring per event - $pp \sqrt{s_{NN}} = 9.2 \text{ GeV}$

The smallest collision system

At least one charged MbbPoint at each ring, for events with different primary vertex position

Trigger Efficiency as a function of Impact Parameter for p+p

Trigger efficiency is not uniform

Trigger Efficiency > 35%only for events with primary vertex \in (-40,40)cm

Material Budget

Radiation Length

The radiation length can be approximated by:

$$X_0 = \frac{716.4 \times A}{Z(Z+1)\ln(\frac{287}{\sqrt{Z}})} \qquad \left[\frac{g}{cm^3}\right]$$

For different materials:

$$\frac{W_0}{X_0} = \sum_i \frac{W_i}{X_i}$$

Element	$X_0 \ ({ m g/cm^2})$	$\rho (g/cm3)$	\bar{X} (cm)	Average Mat. Budget $\%$
Plastic Scintillator & SiPM	43.3886	1.032	0.57	1.31
Mylar	39.69	1.39	0.07	0.25
FR4	288.67	1.86	1.25	0.80
Copper	12.86	8.96	0.10	6.83
Carbon-Fiber	42.11	1.383	1.30	3.09
air	1.205E-3	36.66	7.08	0.02
water	35.758	1.	0.253	0.7

Table 1: Radiation Length X_0 and density ρ of materials used in simulation. Also is shown the average distance \bar{X} traveled by particles on each material and the corresponding material budget.

Projection on material budget in different planes

Material budget in ZX plane, |y| < 10.0 cm

Material budget in ZR plane

Material budget in ZX plane

Average Material Budget

Around 2% for |eta| < 1.9

Status of Electronics

Rack interconnection

Electronic Boards

Mechanical support - Plug & Play MPD-ITS Mechanical Support

Use of basic geometry and MpdRoot to test trigger efficiency in p+p and Xe+Xe collisions at $\sqrt{s} = 9.2$ GeV with PHSD generator

For Xe+Xe collisions Trigger efficiency ~ 100% for b < 12fm

For p+p collisions Trigger Efficiency > 35% only for events with primary vertex \in (-40,40)cm

Electronic boards and prototype is ongoing

Preliminary design of mechanical support is done

Further studies are planned depending on capabilities of electronic cards

Thanks for your attention!

Deadline: end 2024

Reaching time as a function of primary vertex position

Primary Vertex vs Time

Primary Vertex vs Minimum time

