

Light hadron and (hyper)nuclei production by RHIC-STAR

Hui Liu

XIII Collaboration Meeting of the MPD Experiment at the NICA Facility

Outline

- 1. Introduction
- 2. RHIC-STAR Experiment
- 3. Results and Discussions
 - Proton and Light Nuclei Production
 - Hypernuclei production
- 4. Summary and Outlook

Introduction

QCD Phase Transition

- ➤ High Temperature (T):
 - QGP properties
- > High Baryon Chemical Potential (μ_B):
 - Critical Point (CP)
 - 1st phase boundary
- Chemical Freeze-Out
 - Inelastic collisions
 - Hadronization stage
 - Particle abundance is in equilibrium
- Kinetic Freeze-Out
 - Elastic collisions
 - Hadronic substance
 - The momentum distribution and kinetic energy of the particles are stabilized

2024/4/25

Introduction

1. Light Nuclei

- Light nuclei carry information about local baryon density fluctuations
- Provides an effective probe to study first-order phase boundary and the QCD Critical Point

2. Hypernuclei

- > Hypernuclei can provide access to the hyperon–nucleon interaction
- > The structure of the hypernuclei reflect the loosely-bound state nature

3. Production Mechanism

- > Statistical thermal: Light (hyper)nuclei are produced directly during the evolution of the system
- Coalescence: After the kinetic freeze-out of the system, nucleons come together and coalesce to form a composite particle
 K.J. Sun et al, Phys.Lett.B 792 (2019) 132-137;
 A detailed with National Additional Additiona Additional Additional Additional Additiona

K.J. Sun et al, Phys.Lett.B 792 (2019) 132-137; *A. Andronic et al, Nature 561 (2018) 7723, 321-330 H. Agakishiev et al. [STAR Collaboration] Nature 473 (2011) 353*

2024/4/25

MPD Collaboration Meeting

🔍 n

Introduction

- Light nuclei production in heavy-ion collisions at wide energy ranges have been extensively studied both experimentally and theoretically
- Hypernuclei measurements are scarce in heavyion experiments

At low energies, light (hyper)nuclei production is expected to be enhanced due to high baryon density

> *A. Andronic et al. Phys.Lett.B* 697 (2011) 203-207 *B. Dönigus, Eur.Phys.J.A* 56 (2020) 11, 280

2024/4/25

STAR Detector

Main sub-detectors for PID

- Time Projection Chamber (TPC)
 - Ionization energy loss (dE/dx)
- Time of Flight (TOF)

•
$$m^2 = p^2 (c^2 t^2 / L^2 - 1)$$

BES-II Upgrades

➢ iTPC (2019+)

 Extended η acceptance and improved tracking and dE/dx resolution

≻ eTOF (2019+)

• Extended PID coverage

> EPD (2018+)

Improved EP resolution

2024/4/25

Fixed-Target Experiment

- ➤ Target is a 0.25 mm thick gold foil
- \succ Target located at z = 200.7 cm
- Target is held 2 cm below center of beam axis
- FXT extends energy reach down to 3 GeV

2024/4/25

Particle Identification

- Good kinematic coverage in 3 GeV Au+Au collisions
- Particle identification using Time Projection Chamber (TPC) and Time of Flight (TOF)
- Combinatorial background estimated via rotating pion tracks or event mixing on hypernuclei reconstruction

Hypernuclei reconstruction via 2-body channel:

 ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$ ${}^{4}_{\Lambda}H$

 $^{4}_{\Lambda}\text{H}{\rightarrow}^{4}\text{He} + \pi^{-}$

M. Abdallah et al. [STAR Collaboration] Phys.Rev.Lett. 128 (2022) 20, 202301

Transverse Momentum Spectra

- ➢ Transverse momentum spectra of p, d, t, ³He, and ⁴He with rapidity slices in central (0-10%) Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV (BES-II Preliminary)
- ➢ Mid-rapidity (lyl<0.5) transverse momentum spectra of triton in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 – 200 GeV (BES-I published)

Function:

$$\frac{1}{2\pi p_{T}} \frac{d^{2}N}{dp_{T}dy} \propto \int_{0}^{R} r drm_{T} I_{0} \left(\frac{p_{T} \sinh \rho}{T_{kin}}\right) K_{1} \left(\frac{m_{T} \cosh \rho}{T_{kin}}\right)$$

$$\rho = \tanh^{-1}\beta_{r}, \quad \beta_{r}(r) = \beta_{T} \left(\frac{r}{R}\right)^{n}$$

Freeze-out parameters:

- T_{kin} : kinetic freeze-out temperature
- $\langle \beta_T \rangle$: average radial flow velocity
- n : n=1 (I_0 and K_1 are from Bjorken Hydrodynamic assumption)

H. Liu [STAR Collaboration] arXiv:2311.11020 [STAR Collaboration] Phys. Rev. Lett. 130, 202301 (2023)

2024/4/25

Yields of Light Nuclei

- > 3 GeV with good rapidity coverage provides the opportunity to calculate proton and light nuclei 4π yields accurately
- > Transport model reproduces the trend of particle rapidity distribution in central and mid-central collisions

L. W. Chen et al. Phys.Rev.C 68 (2003) 017601;

L. Adamczyk et al. [STAR Collaboration] Phys. Rev. C 96 (2017) 4, 044904

J. Adam et al. [STAR Collaboration] Phys. Rev. C 99 (2019) 6, 064905

2024/4/25

MPD Collaboration Meeting

⁴He

- Particle Mass (GeV/c²) Light nuclei yields decrease exponentially with increasing particle mass
- Slope decrease indicates that light nuclei are more easily formed at low energies

Observations of Density Fluctuations

Compound Yield Ratio Sensitive Observations for Searching Critical Point and 1st order boundary

First-order phase transition Amplification of the density inhomogeneity Huctuations First-order fluctuations Composite particles

C.M. Ko, Searching for QCD critical point with light nuclei. NUCL SCI TECH 34, 80 (2023)

2024/4/25

Charge-particle Dependence of Compound Yield Ratios

- > The yield ratio $N_t \times N_p / N_d^2$ as a function of charged-particle multiplicity $dN_{ch}/d\eta$ ($|\eta| < 0.5$)
- > It is observed that the yield ratio $N_t \times N_p / N_d^2$ exhibits scaling, regardless of collision energy and centrality

Coal. inspired fit: $\frac{N_t \times N_p}{N_d^2} \propto (\frac{R^2 + \frac{2}{3}r_d^2}{R^2 + \frac{1}{2}r_t^2})^3$ R $\propto (dN_{ch}/d\eta)^{1/3}$, $r_d = 1.96$ fm, $r_t = 1.59$ fm

An enhancement with a significance of 4.1σ is observed at 19.6 and 27 GeV, while no enhancement is observed at 54.4 GeV for the same dN_{ch}/dη value

[STAR Collaboration] Phys.Rev.Lett. 130 (2023) 202301

2024/4/25

Energy Dependence of Compound Yield Ratios

- Non-monotonic behavior of yield ratio vs. energy observed from 0-10% central collisions possibly signaling a critical point and/or 1st order phase transition
- 3 GeV 0-10% Au+Au collisions follow the world trend of the energy dependence and monotonically increase with decreasing energies
- > The thermal model shows the energy-dependent trend contrary to experiments
- The yield ratio can be reproduced by the AMPT model when employing a first-order phase transition by input the critical temperature of 154 MeV
 K. Sun et al. arXiv: 2205.11010

2024/4/25

Kinetic Freeze-out Dynamic

H. Liu, arxiv:2208.04650

 At 3 GeV Au+Au collisions, the freeze-out parameters (T_{kin}, (β_T)) show different trend compared to that of higher energy collisions

Indicate a different equation of state (EoS)

The freeze-out parameter (T_{kin}) of d is systematically higher than that of p at 3 GeV, which is different from higher energies, similar trend seen in SMASH Model

The heavier the particle, the earlier freeze-out?

B.I. Abelev et al. [*STAR Collaboration*] *Phys.Rev.C* 79 (2009) 034909 *L. Adamczyk et al.* [*STAR Collaboration*] *Phys.Rev.C* 96 (2017) 4, 044904

2024/4/25

Transverse Momentum Spectra

Transverse momentum spectra of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H with rapidity slices in Au+Au collisions at $\sqrt{s_{NN}} = 3$ (published), 3.9 – 27 GeV (BES-II Preliminary)

Y. Ji [*STAR Collaboration*] *arXiv:* 2312.15768 [*STAR Collaboration*] *Phys.Rev.Lett.* 128 (2022) 20, 202301 <u>*Yue Hang Leung, CBM Collaboration Meeting* 20230925</u>

2024/4/25

Lifetime of Hypernuclei

Unsing $\sqrt{s_{NN}}$ = 3.0 GeV and 7.2 GeV datasets

M. Abdallah et al. [STAR Collaboration] Phys.Rev.Lett. 128 (2022) 20, 202301

- Lifetimes of hypernuclei $(^{3}_{\Lambda}H, ^{4}_{\Lambda}H)$ and $^{4}_{\Lambda}He)$ are shorter than that of free Λ (with 1.8σ, 3.0σ, and 1.1σ respectively)
- Consistent with former measurements, the new measurement greatly reduces the uncertainties

J. Wu, sQM2022 Avraham Gal, EPJ Web Conf. 259 (2022) 08002

2024/4/25

Yields of Hypernuclei

- First measurements on rapidity dependence of hypernuclei yields in heavy ion collisions
- JAM + Coalescence qualitatively describe the rapidity dependence of ³_ΛH yields at √s_{NN} = 3 GeV in 0-10% collisions, while fail to describe the trend in non-central collisions
- JAM + Coal. qualitatively describe the trend of ⁴_ΛH yields versus rapidity
- Provide first constraints for hypernuclei production models in the high baryon density region
 JAM coal. via with tuned parameters (r_c, p_c)

Y. Nara et al. Phys.Rev.C 61 (2000) 024901
H. Liu et al. Phys.Lett.B 805 (2020) 135452
Y. Ji [STAR Collaboration] arXiv: 2312.15768
[STAR Collaboration] Phys.Rev.Lett. 128 (2022) 20, 202301

2024/4/25

Energy Dependence of Yields

- > ${}^{3}_{\Lambda}$ H yield at mid-rapidity increases from 2.76 TeV to 3 GeV, peak at around 3-4 GeV
- Energy dependence qualitatively explained by the increase in baryon density and stronger strangeness canonical suppression at low energies

- > Clear energy dependence is observed for d/p, t/p, and ${}^{3}_{\Lambda}H/\Lambda$ ratios
- Thermal model predicts the trend while not quantitatively describe the yields, it indicate that hypertriton and triton yields might not reach equilibrium at chemical freeze-out

2024/4/25

Energy Dependence of S_3

- > The centrality dependence of S3 could reveal information on its production mechanism
- \succ S₃ indicates an increasing trend with increasing collision energy
- \succ The drop of S₃ at lower beam energies is due to the large source size of the hypernuclei
- Both of coalescence and thermal-FIST suggest increasing trend

T. Reichert et al, Phys.Rev.C 107 (2023) 1, 014912

Mass Dependence of dv_1/dy and $\langle p_T \rangle$

Collective behavior

- \succ v₁ slope (5-40%) and $\langle p_T \rangle$ (0-10%) of light and (hyper)nuclei follow mass number scaling in 3 GeV Au+Au collisions within uncertainties
- The linear trend of particle mass scaling behaviors of light and (hyper)nuclei indicate that they are formed mainly via <u>coalescence process</u>

A Andronic et al. Phys.Lett.B 697 (2011) 203-207 [STAR Collaboration] Phys.Rev.Lett. 130 (2023) 21, 212301;arXiv:2211.16981

2024/4/25

Summary and Outlook

- 1. Light Nuclei measurement
 - → Enhancements of the yield ratios are observed in 0-10% most central collisions at 19.6 and 27 GeV with a combined significance of 4.1 or
 - → Hot and dense medium created in the 3 GeV collisions seems different from that of high energy collisions
- 2. Hypernuclei measurement
 - → The hypertriton yield reaches a maximum at around 3-4 GeV
- 3. Collectivity behavior support the coalescence of light and (hyper)nuclei production
- **I** High statistical data in STAR BES-II at $\sqrt{s_{NN}} = 3 19.6$ GeV
- Deep understanding on light and (hyper)nuclei production mechanisms
- The NICA experiment covers collision energies of $4.0 < \sqrt{s_{NN}} < 11$ GeV, providing very favorable conditions for exploring the production of nuclei and (hyper)nuclei in the low-energy region.

2024/4/25

Thanks for your attention!