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Plan

A general overview of TMD studies, including
theory, interpretation, phenomenology.

All topics are covered superficially.
For more details – interrupt and ask questions!

▶ Part 1
▶ General ideology
▶ TMD factorization in a nutshell
▶ Evolution of TMD distributions
▶ Unpolarized TMD distributions (properties)
▶ Unpolarized TMD distributions (determination)

▶ Part 2
▶ Zoo of TMD distributions
▶ Polarized distributions (properties and determination)
▶ Nucleon tomography
▶ Problems and perspectives of TMD physics
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Hadron is a 3D object

Nucleon tomography aims to explore
the multi-dimensional structure

of nucleon.
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Hadron is a 3D object

Complete information about
motion of partons within nucleon

is encoded in the Wigner distribution
W (x, k⊥, r⊥)
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Wigner distribution
GTMD(x, k⊥, r⊥)

∫
dr⊥

∫
dk⊥

TMD(x, k⊥) GPD(x, r⊥)

∫
dx

∫
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∫
dr⊥

∫
dx

PDF(x) FF(r⊥)??(k⊥)

spin, charge, total momentum, mass, tensor charge, ...

∫
dk⊥

∫
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∫
dr⊥
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Access 3D structure ⇒ process with 3D kinematic ⇒ at least 2 hadron states

Golden processes

SIDISDY SIA

2 hadron states define the “scattering plane”
▶ Invariant mass of the photon Q2 → ∞
▶ Transverse momentum of the photon qT
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Access 3D structure ⇒ process with 3D kinematic ⇒ at least 2 hadron states

Golden processes

SIDISDY SIA

Sources of transverse momentum of photon
▶ Perturbative: from loops and multi-parton interaction qT ∼ Q ≫ Λ

collinear factorization

▶ Non-Perturbative: from non-colinearity of partons qT ∼ Λ
TMD factorization
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TMD factorization theorem

s,Q2 → ∞, all other scales (x1, x2, qT ) are fixed

dσ

dqT
= σ0

∫
d2b

(2π)2
ei(bqT )C

(
Q

µ

)
F (x1, b;µ, ζ)F (x2, b;µ, ζ̄) +O

(
qT

Q
,
Λ

Q

)

DY

Hard coefficeint function
▶ Perturbative (known up to N4LO)

▶ µ is hard-factorization scale (µ ∼ Q)

TMD distributions

▶ Non-Perturbative functions

▶ One for each hadron (sum over
quark-flavors is implied)

▶ Depend on two scales (µ, ζ)

Fourier transform

▶ TMD factorization is “natural” in
position space

▶ TMD distributions usually defined in
position space

▶ In momentum space

F̃ (x, kT ) ≃
∫

d2bei(kb)T F (x, b)

dσ ∼
∫

d2k1,2δ(qT−k1−k2)F̃ (x1,k1)F̃ (x2,k2)

Power corrections

▶ So far, only theory (known at NLP!)

▶ Modern frontier..

The leading-power TMD factorization is proven at all orders of perturbation theory.
There are several approaches to prove it (each has pros. and cons.)

• Method of regios [Collins’ textbook]
• SCET [Becher, Neubert, 2010, Scimemi, Echevarria, Idilbi 2011]

• OPE [AV, Moos, Scimemi, 2021]
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Why there are two scales?

Hard

n̄-collinear

n-collinear

To derive TMD factorization one have to distinguish 3 regions
▶ Hard fields (well-localised interactions)

▶ n̄-collinear fields (belongs to h1)

▶ n-collinear fields (belongs to h2)

▶ soft (not necessary)

Hard/collinear separation ⇒ µ
n/n̄ separation ⇒ ζ

µ ∼ Q
ζζ̄ = Q4
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Why there are two scales?

Hard

n̄-collinear

n-collinear

soft

To derive TMD factorization one have to distinguish 3 regions
▶ Hard fields (well-localised interactions)

▶ n̄-collinear fields (belongs to h1)

▶ n-collinear fields (belongs to h2)

▶ soft (not necessary)
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TMD evolution
same for all TMD-distributions (polarized & unpolarized)

µ2 d

dµ2
F (x,b;µ, ζ) =

γF (µ, ζ)

2
F (x,b;µ, ζ)

ζ
d

dζ
F (x,b;µ, ζ) = −D(b;µ)F (x,b;µ, ζ)

▶ γF anomalous dimension for hard/collinear separation
▶ Usual UV anomalous dimension
▶ Perturbative (known up to 4-loops)

▶ D Collins-Soper kernel (anomalous dimension for n/n̄ separation)
▶ also known as “rapidity anomalous dimension”
▶ Non-Perturbative function of b

▶ Integrability condition

−
dD(b;µ)

d lnµ2
=

1

2

dγF (µ, ζ)

d ln ζ
=

Γcusp(µ)

2
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TMD evolution

µ2 d

dµ2
F (x,b;µ, ζ) =

γF (µ, ζ)

2
F (x,b;µ, ζ)

ζ
d

dζ
F (x,b;µ, ζ) = −D(b;µ)F (x,b;µ, ζ)

Solution

F (x,b;µ, ζ) = R[b; (µ, ζ) → (µi, ζi)]F (x,b;µi, ζi)

R[b; (µ, ζ) → (µi, ζi)] =

exp

[∫
P

(
γF (µ, ζ)

dµ

µ
−D(b, µ)

dζ

ζ

)]

▶ Path independent
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TMD factorization theorem
(practical form)

dσ

dqT
= σ0

∫
d2b

(2π)2
ei(bqT )C

(
Q

µ

)
F (x1, b;µ, ζ)F (x2, b;µ, ζ̄) +O

(
qT

Q
,
Λ

Q

)

dσ

dqT
= σ0

∫
d2b

(2π)2
ei(bqT )C

(
Q

µ

)
R2[D(b)]F (x1, b)F (x2, b) +O

(
qT

Q
,
Λ

Q

)
DY

Evolution

Collins-Soper kernel
▶ Evolution factor is function of CS kernel

▶ Universal for all processes

▶ Universal for all hadrons

▶ Can be computed with lattice methods
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Collins-Soper kernel is about QCD vacuum

QCD vacuum

li
g
h
t-
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n
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transverse

= 0fm

0fm=

Perturbation theory

< 0.01fm

Perturbation theory

1 2 3 4 5

0.2

0.4

0.6

> 0.05fm

Non-Perturbative interaction with vacuum
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Collins-Soper kernel ∼ Wilson loop
[AV,PRL 125 (2020)]

D(b, µ) = λ−
ig

2

Tr
∫ 1
0 dβ⟨0|Fb+(−λ−n+ bβ)WC′ |0⟩

Tr⟨0|WC′ |0⟩
+ ZD(µ)
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Relation to the static potential

In SVM the potential between two quark sources (confining potential) is
[Brambilla,Vairo,hep-ph/9606344]
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dσ

dqT
= σ0

∫
d2b

(2π)2
ei(bqT )C

(
Q

µ

)
R2[D(b)]F (x1, b)F (x2, b) +O

(
qT

Q
,
Λ

Q

)

▶ Each data-point is a convolution of three independent nonperturbative functions

▶ Each function is responsible for a separate kinematic variable

▶ Multi-dimensional bining is essential

DY
dPS = dQdqT dy

D(b, µ) F (x, b)

SIDIS
dPS = dQdqT dx dz

D(b, µ) F (x, b) D(z, b)
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ART23=[Moos,Scimemi,AV,Zurita,2305.07473]
Global extraction of unpolarized TMD & CS-kernel from Drell-Yan data
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Total:

627 data points
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▶ ATLAS
▶ Z-boson at 8 (y-diff.)
▶ Z-boson at 13 TeV (0.1% prec.!)

▶ CMS
▶ Z-boson at 7 and 8 TeV
▶ Z-boson at 13 TeV (y-diff.)
▶ Z/γ up to Q = 1000GeV

▶ LHCb
▶ Z-boson at 7 and 8 TeV
▶ Z-boson at 13 TeV (y-diff.)

▶ Further more:
▶ Z-boson at Tevatron
▶ W-boson at Tevatron
▶ Z-boson at RHIC
▶ DY at PHENIX
▶ DY at FERMILAB (fix target)

627 data points
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4GeV 1000GeV

Very presice test of TMD evolution
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Some features of ART23:

▶ Hard function and evolution at N4LO

▶ Matching to PDF at N3LO

▶ Flavor dependent NP-ansatz

▶ Consistent inclusion of the PDF uncertainty

▶ artemide (=ART23)
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TMD distributions are nonperturbative 3D functions
However, they match 1D PDFs at b → 0 boundary

Fq←h

b

b~B b~Λ-1

P
er
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rb
a
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v
e
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H
ig
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N
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-
P
er
tu
rb
a
ti
v
e

b
≪
1
/Q

n=0

n
=
1

n
=
2

n
=
3

F (x, b) =
[
q(x) + αs

(
p(x) ln(b2µ2) + ...

)
+ α2

s...
]
+ b2...+ ...

F (x, b) = C(x, b)⊗ q(x)fNP (x, b)

Lead.power OPE
up N3LO

Higher power OPE

Fitting ansatz
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b(GeV-1)

No TMD

fixed order

F (x, b) ∼ f(x) → f(x)δ(kT )

Kinematic ranges:
▶ Power corrections qT ∼ Q

▶ Resummation Λ ≫ qT ≫ Q

▶ Nonperturbative qT ≲ Λ ∼ 2− 4GeV
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fNP to fit

Low-energy measurements are
most interesting,

because they provide access
to NP structure.
Unfortunately,

all low-energy measurements
are inprecise.

Kinematic ranges:
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End of part 1

Part 1

▶ Basics of TMD factorization

▶ TMD evolution and non-perturbative Collins-Soper kernel

▶ Determination of unpolarized distributions

▶ Kinematics of TMD processes

Part 2

▶ Zoo of TMD distributions

▶ Extraction of polarized distributions

▶ Nucleon tomography

▶ Problems and perspectives of TMD physics
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