φ(1020) and K*(892)⁰ resonance production in BiBi@9.2 GeV

Mikhail Malaev

Resonances in heavy-ion collisions

- ✓ Vacuum properties of resonances are well defined; large branching ratios in hadronic decay channels → possible to measure
- ✓ Probe reaction dynamics and particle production mechanisms vs. system size and √s_{NN}:
 ✓ hadron chemistry and strangeness production, \$\phi\$ with hidden strangeness is one of the key probes
 - ✓ reaction dynamics and shape of particle p_T spectra, p/K^* , p/ϕ vs. p_T
 - \checkmark lifetime and properties of the hadronic phase
 - \checkmark spin alignment of vector mesons in rotating QGP (polarization of quarks from spin-orbital interactions)

✓ flow, comparison with e^+e^- measurements, jet quenching, background for other probes etc.

Hadronic phase and medium modifications

Ratio K^{*0} to K from BES data suggests re-scattering loss in medium due to shorter lifetime of K^{*0}

The K^{*0}/K ratio shows a centrality dependence and follows the same trend among different collision energies. On the contrary, the ϕ/K ratio is mostly independent of centrality.

Reconstructed resonance yields in heavy ion collisions are defined by:

- ✓ resonance yields at chemical freeze-out
- ✓ hadronic processes between chemical and kinetic freeze-outs:

rescattering: daughter particles undergo elastic scattering or pseudo-elastic scattering through a different resonance \rightarrow parent particle is not reconstructed \rightarrow loss of signal

regeneration: pseudo-elastic scattering of decay products ($\pi K \rightarrow K^{*0}$, $KK \rightarrow \phi$ etc.) \rightarrow increased yields

Resonances in AuAu@11 GeV, UrQMD

- * Resonances are decayed by UrQMD, daughters participate in elastic and inelastic scattering
- * Resonance are reconstructed by invariant mass method according to decay channels
- ♦ $\phi \rightarrow K^+K^-$ (c $\tau \sim 45$ fm/c): modest line shape modifications in central AuAu@11 at low p_T

♦ $\rho(770)^0 \rightarrow \pi^+\pi^-$ (cτ ~ 1.3 fm/c): significant line shape modifications in central AuAu@11 at low p_T

K*(892)⁰ in AuAu@11 GeV, UrQMD

- ★ $K^*(892)^0 \rightarrow \pi^{\pm}K^{\pm}$ (c $\tau \sim 4.2$ fm/c); combine $\pi^{\pm}K^{\pm}$ pairs from true $K^*(892)^0$ decays
- ♦ Same fitting function for $K^*(892)^0$ and background as in ALICE
- * Central collisions: small line shape modifications at low p_T ; nothing at higher momentum

✤ Peripheral collisions: nothing

ρ(770) in AuAu@11 GeV, UrQMD

- ★ $\rho(770)^0 \rightarrow \pi^+\pi^-$ (cτ ~ 1.3 fm/c); combine $\pi^+\pi^-$ pairs from true $\rho(770)^0$ decays
- ↔ Same fitting function for $\rho(770)^0$ and background as in ALICE
- Central collisions: significant line shape modifications; excess with respect to the peak model is described with a background function

Peripheral collisions: much smaller modifications are observed, only at low momentum

Yields of $K^*(892)^0$ and $\rho(770)^0$ in AuAu@11 GeV, UrQMD

- - yield is undercounted because of pion rescattering;
 - \checkmark this yield is preserved in e⁺e⁻ measurements !!!

- ★ $K^*(892)^0 \rightarrow \pi^{\pm}K^{\pm}$ (cτ ~ 4.3 fm/c)
 - ✓ yield is undercounted because of pion and kaon rescattering

- ★ Signal losses are larger for shorter-lived $\rho(770)^0 \rightarrow$ higher chance for $\rho(770)^0$ to decay and for daughters to rescatter in the medium
- Predicted signal losses are noticeable for the total (p_T -integrated) yields since bulk of the hadrons is produced at low p_T at NICA energies

Particle ratios in AuAu@4-11 GeV, UrQMD, AMPT, PHSD

- ✤ Models with hadronic cascades (UrQMD, PHSD, AMPT)
- * Ratios for two shortest-lived resonances (ρ , K^{*}(892)) are shown normalized to most peripheral collisions

- ▶ Models predict suppression of ρ/π and K^{*}/K ratios in Au+Au@4-11, resonances with small $c\tau$
- Suppression depends on the final state multiplicity rather than on collision energy
- > Yield losses occur at low momentum as has been demonstrated before

Analysis Details

- ✤ Data: Request 25, <u>BiBi@9.2</u> GeV, UrQMD+Geant4
- ✤ Analysis train: Request 6 with resonance wagons
 - Event and track selection:

Event selection:

mZvtxCut 130 // cut on vertex z coordinate

event.getCentrTPC() // Centrality determination

PID cuts:

mPIDsigTPC 2 // dEdx PID parameters

mPIDsigTOF 2 // dEdx PID parameters

mNofHitsCut 10 // minimal number of hits for a track

mEtaCut 1.0 // maximal pseudorapidity for a track

mPtminCut 0.1 // minimal pt for a track

mDCACut 2.0* σ // maximum DCA for a track ($\sigma = \sigma(p_T, \text{ centrality})$)

Pair cuts:

mYCut 0.5 // pair rapidity cut

Mass Resolution for resonances

 $\phi(1020)$, reconstructed peaks

★ Full chain simulation and reconstruction, $p_T = 0.4-0.6 \text{ GeV/c}$, $\phi(1020) \rightarrow K^+ + K^-$, |y| < 0.5

- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- Distributions are fit to Voigtian function + polynomial (mass resolution fixed to estimated value, Γ free parameter)
- Signal can be reconstructed at $p_T > 0.2$ GeV/c, high- p_T reach is limited by available statistics
- S/B ratios deteriorates with increasing centrality Cross-PWG meeting: 05.03.2024

 $K^*(892)^0$, reconstructed peaks

★ Full chain simulation and reconstruction, $p_T = 0.0-0.2 \text{ GeV/c}$, K*(892)⁰→K⁺ + π⁻, |y| < 0.5

- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- Distributions are fit to Voigtian function + polynomial (mass resolution fixed to estimated value, Γ free parameter)
- Signal can be reconstructed at $p_T > 0$ for $K^*(892)^0$, high- p_T reach is limited by available statistics
- S/B ratios deteriorates with increasing centrality Cross-PWG meeting: 05.03.2024

Reconstruction efficiencies

φ(1020) K*(892)⁰ p_T (GeV/c) p_T (GeV/c) 4.5 4.5 3.5 3 2.5 2 10 10 2.5 1.5 1.5 10 10 0.5 0.5 -0.5 0.5 -0.5 -1 У Ψ Ψ Α× Α× 0.90.9 0-10% 10-20% 0-10% 10-20% 0.8 0.80.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0<u></u>∟ 0<u>-</u> 2.5 2.5 1.5 0.5 1.5 0.5 2 2 1 p_{_} (GeV/*c*) p_{_} (GeV/*c*)

♦ Reasonable efficiencies in the wide p_T range, |y| < 0.5

- ★ Measurements are possible from 0 momentum for $K^*(892)^0$ and from 0.2 GeV/c for $\phi(1020)$
- Modest centrality dependence

MC closure tests

• Full chain simulation and reconstruction, p_T ranges are limited by the possibility to extract signals, |y| < 0.5

ф(1020)

K*(892)⁰

- ✤ Reconstructed spectra match the generated ones within uncertainties
- ✤ First measurements for resonances in centrality dependent analysis will be possible with accumulation of ~ 10^8 A+A events
- ✤ Measurements are possible starting from ~ zero momentum → sample most of the yield, sensitive to possible modifications

Summary

- ✤ Measurement of resonances contribute to the MPD physical program
 - ✓ hadronic phase properties, strangeness production, hadronization mechanisms and collectivity, hadrochemistry, spin alignment etc ...
- ✤ First measurements for resonances in centrality dependent analysis will be possible with accumulation of ~ 10^8 A+A events
- ✓ Measurements are possible starting from very low momenta with decent mass resolution → high sensitivity to different physics phenomena most prominent at low p_T
- ✓ Other resonances including multi-stage decays of K^{*}(892)[±], Σ(1385) [±] and Ξ(1520)⁰
 → work in progress

Backup slides

Feasibility studies, framework

- Simulated minbias AuAu@11 collisions using UrQMD 3.4 with default settings
- Tracked simulated particles through the MPD Phase-I detector using *mpdroot*
- Analysis cuts were optimized for higher signal significance (no p_T variation)
 - Event selection:
 - ✓ $|Z_{vrtx}| < 50$ cm, realistic distribution
 - Basic track selections:
 - ✓ number of TPC hits > 24
 - $\checkmark \quad |\eta| < 1.0$
 - ✓ $p_T > 50 \text{ MeV/c}$
 - ✓ TPC-TOF combined PID, probability > 0.5
 - \checkmark TPC-refit for kaons and protons based on track PID hypothesis
 - Primary tracks:
 - ✓ $|\text{DCA}(x,y,z)| < 2\sigma$
 - V0 & cascades:
 - ✓ topology cuts for weakly decaying secondary particles ($K_s \rightarrow \pi \pi$)
 - Combinatorial background:
 - event mixing ($|\Delta_{\text{Zvrtx}}| < 2 \text{ cm}, |\Delta_{\text{Mult}}| < 20, N_{\text{ev}} = 10$)

Resonance reconstruction in A-A collisions

- ✤ Hadronic decays of resonances are studied with the invariant mass method in the experiments
- ✤ After subtraction of uncorrelated combinatorial background estimated with mixed-event pairs, like-sigh pairs, rotation pairs etc., the resonance peaks are approximated with a given peak-model (rBW + mass resolution + mass-dependent width + phase space correction + ...) + background function
- ★ Examples of invariant mass distributions and fits from ALICE for ϕ , $\Lambda(1520)$ and $\rho(770)^0$:

- For most of the cases, the peak models are inspired by theory and measurement in elementary e⁺e⁻ and/or pp collisions where medium effects are not as important
- Line shape modifications will result in the change of the measured yield and masses/widths

$\rho(770)$, signal extraction – practice tests

Phys.Rev. C99 (2019) no.6, 064901

Fig. 1: (Color online) Invariant mass distributions for $\pi^+\pi^-$ pairs after subtraction of the like-sign background. Plots on the left and right are for the low and high transverse momentum intervals, respectively. Examples are shown for minimum bias pp, 0–20% and 60–80% central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. Solid red curves represent fits to the function described in the text. Colored dashed curves represent different components of the fit function, which includes a smooth remaining background as well as contributions from K_S^0 , ρ^0 , $\omega(782)$, $K^*(892)^0$, $f_0(980)$ and $f_2(1270)$. See text for details.

Particle ratios in AuAu@4-11, UrQMD, AMPT, PHSD

- ✤ Models with hadronic cascades (UrQMD, PHSD, AMPT)
- ★ Ratios for longer-lived resonances ($\Sigma(1385)$, $\Lambda(1520)$, $\Xi(1530)$ and ϕ)

• Event generators predict yield modifications qualitatively similar to those obtained at RHIC/LHC:

- \rightarrow lifetime and density of the hadronic phase are high enough
- → modification of particle properties in the hadronic phase should be taken into account when model predictions for different observables are compared to data
- \rightarrow study of short-lived resonances is a unique tool to tune simulations of the hadronic phase

Masses of $K^*(892)^0$ and $\rho(770)^0$ in AuAu@11, UrQMD

- ✤ In peripheral collisions, the peak models return masses and widths as measured in vacuum
- ✤ In central collisions, the masses are measured smaller
- Similar mass "modifications" have been reported @ RHIC and the LHC, large uncertainties:

21

Resonances

Particle	Mass (MeV/ c^2)	Width (MeV/ c^2)	Decay	BR (%)
ρ0	770	150	π*π	100
$K^{\star \pm}$	892	50.3	π±K₅	33.3
K*0	896	47.3	πK+	66.7
ф	1019	4.27	K+K-	48.9
Σ^{\star_+}	1383	36	$\pi^+\Lambda$	87
$\Sigma^{\star_{-}}$	1387	39.4	$\pi \Lambda$	87
Λ(1520)	1520	15.7	K⁻p	22.5
Ξ*0	1532	9.1	π+Ξ-	66.7

Hadronization at intermediate momenta

& Baryon puzzle - increased baryon-to-meson (p/π, Λ/K_s^{0} , Λ_c^{+}/D) ratios in heavy-ion collisions at RHIC and the LHC

Driving force of enhancement is not yet fully understood:

- ✓ particle mass (hydrodynamic flow)?
- ✓ quark count (baryons vs. mesons)?

 \blacklozenge ϕ and K^{*0} are well suited for tests as mesons with masses very close to that of a proton:

 $\checkmark \Delta m_{\phi} \sim 80 \text{ MeV}/c^2$, $\Delta m_{K^*0} \sim -45 \text{ MeV}/c^2$

