Adsorption behavior of superheavy elements and their compounds on gold surface: periodic DFT calculations

> Anton Ryzhkov, Vladimir Shabaev St. Petersburg State University

V. Pershina, GSI, Darmstadt Miroslav Ilias, Matej Bel University, Slovakia

with the support of JINR, Dubna

Superheavy Elements to be Chemically Studied

1																	18
1 H	2											13	14	15	16	17	2 He
3	4]										5	6	7	8	9	10
LI	ве											В	C	N	0	F	Ne
11	12			_								13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Ρ	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	br	kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	$\mathbf{\bot}$	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La→	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Acၞ	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
:(119);(120);(121):																	
:` '	` ´	i` ':	÷														
]	58	50	60	61	62	63	64	65	66	67	68	60	70	71	
Lanthanides -		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Th		Ho	Fr	Tm	Yh			
		l	00	11	INU	1.00	0111	Ľu	Ou		Dy	110		1111	10	Lu	
Actinides 🛨		90	91	92	93	94	95	96	97	98	99	100	101	102	103		
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
Super	actinio	tes 茸	(122	- 155)												

Chemical separation is relatively slow technique – now SHE isotopes with $t_{1/2}$ > 1 s can be studied

V. Pershina, Dubna Meeting 2021

Gas-Phase Chromatography Experiments on SHEs at JINR, Dubna

V. Pershina, Dubna Meeting 2021

Method for Periodic Calculations

- SCM BAND
 - 2 component: SR and SO relativity
 - all electron
 - STO basis sets till Z=120
 - geometry optimization (up to 300 iterations)
 - full relaxation
 - various *E*^{xc} including dispersion-corrected
 - checking all adsorption positions (hollow-2 is most stable)
 - (for molecules: Force Field method *M. Ilias*)
 - commercial & host-locked

Modeling Gold Surface

- Modeling gold surfaces
 - calculating structure of gold bulk
 - Au(111) geometrical cut plane most stable
 - constructing the (4 x 4) supercell to avoid interaction of ad-atoms (for single species of SHEs)

"hollow-2" is most stable position

Periodic Calculations of E_{ads} (Pb/FI) on Au(111)

Au(111) s-cell

Atom/Molecule

Atom/Molecule on Au-s-cell

V. Pershina, Dubna Meeting 2021

Summary of Previous Studies

Previous studies

- Atoms
- Hg/Cn, Tl/Nh, Pb/Fl, Bi/Mc, Po/Lv,

At/Ts, Rn/Og

- \circ Compounds
- hydrides BiH/McH, PoH/LvH, AtH/TsH,

RnH/OgH

- oxyhydrides AtOH/TsOH, RnOH/OgOH
- Present work
 - oxydes AtO/TsO, AtO₂/TsO₂, AtOO/TsOO
 - oxyhydrides AtO(OH)/TsO(OH)
- Work in progress
 - oxydes PoO/LvO, PoO₂/LvO₂
 - oxyhydrides BiO(OH)/McO(OH), Po(OH)₂/Lv(OH)₂
 - hydrides PoH₂/LvH₂, BiH₃/McH₃

A. Ryzhkov, V. Pershina, M. Ilias and V. Shabaev, Phys. Chem. Chem. Phys., 25 (2023).

Formation of Compounds of SHEs

Formation of compounds in the in the atmosphere of O_2 and in the recoil chamber (reactions with O, H and OH radicals)

- At + O = AtO
- $O + AtO = AtO_2$
- At + $O_2 = AtOO$
- AtO + $\overline{O}H$ = AtO(OH)
- AtOO + H = AtO(OH)
- Ts + O = TsO
- $O + TsO = TsO_2$
- Ts + O_2 = TsOO
- TsO + $\overline{O}H$ = TsO(OH)
- TsOO + H = TsO(OH)

- $E_r = -2.679 \text{ eV}$ $E_r = -2.586 \text{ eV}$ $E_r = -0.139 \text{ eV}$ $E_r = -1.730 \text{ eV}$ $E_r = -3.150 \text{ eV}$
- $E_r = -2.748 \text{ eV}$ $E_r = -2.335 \text{ eV}$ $E_r = -0.302 \text{ eV}$
- E^r = -1.830 eV E^r = -3.160 eV

Adsorption of MO (M = At/Ts) on Au(111)

Results:

SR $E_{ads}(AtO) = 186 \text{ kJ/mol}$ SO $E_{ads}(AtO) = 168 \text{ kJ/mol}$

SR E_{ads} (TsO) = 204 kJ/mol SO E_{ads} (TsO) = 213 kJ/mol

Adsorption of the MO molecules on the Au(111) surfaces takes place via interaction of the both M and O with the surface Au atoms.

Adsorption of MO_2 (M = At/Ts) on Au(111)

Results:

SR $E_{ads}(AtO_2) = 179 \text{ kJ/mol}$ SO $E_{ads}(AtO_2) = 198 \text{ kJ/mol}$

SR $E_{ads}(TsO_2) = 193 \text{ kJ/mol}$ SO $E_{ads}(TsO_2) = 271 \text{ kJ/mol}$

Adsorption of the MO_2 molecules on the Au(111) surfaces takes place via interaction of both oxygen atoms and M atom with the surface Au atoms.

Adsorption of MOO (M = At/Ts) on Au(111)

Results:

SR E_{ads} (AtOO) = 183 kJ/mol SO E_{ads} (AtOO) = 160 kJ/mol

SR E_{ads} (TsOO) = 192 kJ/mol SO E_{ads} (TsOO) = 184 kJ/mol

The MOO molecules become rather stretched upon adsorption, so that the M atom and OO group are attached almost separately to the surface.

Adsorption of MO(OH) (M = At/Ts) on Au(111)

Results:

SR E_{ads} (AtO(OH)) = 233 kJ/mol SO E_{ads} (AtO(OH)) = 217 kJ/mol

SR E_{ads} (TsO(OH)) = 266 kJ/mol SO E_{ads} (TsO(OH)) = 232 kJ/mol

Adsorption of these molecules occurs similarly to the MOO molecules, where the species become stretched upon adsorption.

Results

Summary of the calculated E_{ads} values of the At and Ts compounds on the Au(111) surface at the SO level of theory in comparison with the experimental $-\Delta H_{ads}$ values (in kJ/mol)

	M ^a	MH ^a	MOH ^a	MO	MO_2	MOO	MO(OH)
M=At	184	164	185	168	198	160	217
M=Ts	203	236	193	213	271	184	232
exp. (At)	154 ^b				124 ^b		

^aA. Ryzhkov, V. Pershina, M. Ilias and V. Shabaev, *Phys. Chem. Chem. Phys.*, 2023, **25**. ^bA. Serov et al. *Radiochim. Acta*, 2011, **99**, 593-600.

Conclusions for Experiments with Gold Surface of Detectors

- The E_{ads} values for the At species are similar, with the sequence AtOO < AtH < AtO < At < AtOH < AtO₂ < AtO(OH)
- The E_{ads} values for the Ts species are all larger than for the corresponding At ones with the sequence TsOO < TsOH < Ts < TsO < TsO(OH) < TsH < TsO₂.

Acknowledgment of the Laboratory of Information Technologies of JINR