Perspective cold fusion reactions for synthesis of superheavy nuclei

J.Hong, G.G.Adamian, N.V.Antonenko,

P.Jachimowicz, M.Kowal

What interesting fusion reactions can still be done with targets 204,206,207,208 Pb?

- 1. Study of xn (neutron) evaporation channels with x > 1
- 2. Production of new neutron-deficient isotopes and study of fissility vs isospin of SHN (Factory of SHN)
- 3. Study of fusion (quasi-fission) probability

Dynamics of fusion in the dinuclear system model

Evaporation residue cross section for the production of superheavy nuclei:

$$\sigma_{ER}^{s}(E_{c.m.}) = \sum_{J} \sigma_{c}(E_{c.m.}, J) P_{CN}(E_{c.m.}, J) W_{sur}^{s}(E_{c.m.}, J)$$

interplay of capture, fusion, survival probabilities

Q-value of fusion: 1n-channel is the sub-barrier in fusion with Ti, Cr, Fe

Predictions of the properties of heaviest nuclei are based on the Macroscopic-Microscopic Model:

Mass Table by P.Jachimowicz, M.Kowal, J.Skalski, At. Data Nucl. Data Tabl. **138** (2021) 101393

$$^{48}\text{Ca} + ^{239}\text{Pu} -> ^{283}\text{Fl} + 4\text{n}$$

76
Ge+ 208 Pb -> 283 Fl+1n

$$\frac{P_{CN}(1n)}{P_{CN}(4n)} \approx \frac{W_{sur}^{4n}}{W_{sur}^{1n}}$$

$$^{48}\text{Ca} + ^{233}\text{U} -> ^{277}\text{Cn} + 4\text{n}$$

70
Zn+ 208 Pb -> 277 Cn+1n

Summary

- 1. Using the cold fusion reactions in xn-channels, one can directly produce and study the neutron-deficient SHN in Factory
- 2. For future, population of the yrast rotational band of SHN produced in cold

fusion
$$(^{50}\text{Ti} + ^{208}\text{Pb} -> ^{256}\text{Rf} + 2n)$$

Dependence of fission barrier on spin

$$B_f(E_{CN}^*, J) = B_f^{LD}(J) + B_f^M(E_{CN}^* = 0)$$

$$\times \exp[-E_{CN}^*(J)/E_D] \exp[-J(J+1)/D]$$

Damping parameter D from exper. data

$$E_D = \alpha_0 A^{4/3}/a,$$

where
$$\alpha_0 = 0.4$$
.

$^{48}\text{Ca} + ^{208}\text{Pb} \rightarrow ^{254}\text{No} + 2\text{n}$ E=215 MeV D=1000 Rel. Yield E=219 MeV ±1000 Rel. Yield

⁴⁸Ca+²⁰⁸Pb

D=1000

This allows us to obtain an access to the isotopes which are unreachable in other reactions due to the lack of proper projectile-target combinations

A weak drop of the cross section is due to

- 1. the interplay of fusion and survival probabilities
- 2. a weak change of the difference between the fission barrier height and neutron binding energy at 1-4 steps of n-evaporation

Energies of the maximum of cross section in 1n-,2n- channels are considerably smaller than the Coulomb barrier height for the sphere-side orientation plus Q-value: $V_b + Q_a$

The larger the value of $V_b + \mathbb{Q}$, the smaller the cross sections are for 1n-, 2n-channels

Mass asymmetry coordinate

$$\eta = \frac{A_1 - A_2}{A_1 + A_2}$$

$$\eta=0$$
 for $A_1=A_2$, $\eta=\pm 1$ for A_1 or $A_2=0$