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Particles (balls for d > 1)
perform independent BM's on
RY until they meet

At the moment of collision
particles instantly annihilate
(prob. 0) or coalesce (prob.
1-0)

ABM’s: § =1; CBM's: § =0
Discrete realisation: domain
walls in the g = (1 + %)—state
dynamic Potts model at T =0

Correlation functions:

Pgn)(Xh e ,x,,)ddxl ...d%%,
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d=1 p(l) +—1/2

d=2: pM) ~ log(t)/t

d>2: p(l) ~ 1/t

Dynamical RG analysis (with R. Rajesh and C. Connaughton):
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Statistics of ABM's, CBM's
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Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz,
Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham,
Masser

d=1: pgl) ~t71/2

d=2: pM) ~ log(t)/t

d> 2 pgl) ~ 1/t

Dynamical RG analysis (with R. Rajesh and C. Connaughton):

e o

o d=1 p(tn) ~tTE g
n n _ n(n—1)
o d=2 p{" ~ (259} (log(r))

n(n—1)
2

Aim: confirm , =
dimensions - rigorously

- the spectrum of anomalous
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The model
Mean field analysis

o p1 = _(=0120) 5 (1) 2

2 1
I+0 Xt

o Large-t asymptotic: p() ~

° p(n) ~ ,0(1) n.¢n

@ These answers are wrong for d = 1 (p(!) ~ t=1/2) and d =2
(p(l) - log(t))

t

@ Smoluchowski theory: X\ ~ t=1/2 for d = 1; A\ ~ 1/ log(t) for
d=2

@ This fixes the answers for n = 1, but does not capture the
non-linear scaling for n > 1

e Exact equations: p(" = F,[p(" p("*1)] (Hopf chain)
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o Idea: find a set of observables (®("),~; such that
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@ o("'s satisfy closed equations

o Realization: for n =1,2, ... define

O (x1,... . xan) 1= Prob(Ne(xei—1,x07) = 0,i = 1,....n)

o Observe:
o (at - ill (9,3) ¢§2") =0forxy <...< X2

e ¢§2n)( ey Xk = Xk415 - - ) = ¢g2n—2)(. coy Xk—1y Xk+42, -« )
e pgn)(xlﬂx:s’ A 7in71) =
n 2
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One dimension
Solution

Claim: ¢'(tzn)(X1, ..., Xon) = Pficicj<on <¢(t2)(Xi7>9))

Recall: if M = —M7 - an antisymmetric 2n x 2n matrix,
then the Pfaffian of M is Pf(M) = +/det(M)

Compare this with correlation functions for free fermions

Correlation functions can be obtained by differentiation:

0 "(x1,. . xn) = Phici <n(Ke(xi, %))
@ K; is a 2-by-2 matrix kernel of the form

Kt(X }/) _ ¢£2)(X7}/) a2¢5.‘2)(x7.)/) for x < y
’ 0P (x,y) 00,99 (x,y)

@ Distributions of particles of this type are called Pfaffian point
processes
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2n—2)

e Compare <Dg2n) with similar observables for ASEP (Borodin,
Corwin, Sasamoto)
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e For § =1, this is the bulk scaling limit of the law of real
eigenvalues in the real Ginibre ensemble (Borodin-Sinclair,
Forrester-Nagao)

o A" (xt,. . xk) K et i [T, [xi — x| - nonlinear
scaling
o Initial condition: particles start from every point of R_ at
t=0

o 00y, 2) = 25F (34, 5%)

(u—

o K(y,z 71+/ 7 e 2 erfc(“*") dudv
e For § =0, this is the edge scaling limit of the law of real
eigenvalues in the real Ginibre ensemble (Borodin-Sinclair)
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Two dimensions

Non-coalescing Brownian disks in 2d

o(t™)

@ What is the probability
p%’c)-(x, t) that n non-interacting
Brownian disks of radius 1 with
initial positions x1, x, ..., x, do
not overlap before time t, where
- > t — o0o?

t
oe |

s(t)

Typical non-collision event
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Non-coalescing Brownian disks in 2d

o(t™)

t
oe |

s(t)

Typical non-collision event

@ What is the probability
p%’c)-(x, t) that n non-interacting
Brownian disks of radius 1 with
initial positions x1, x, ..., x, do
not overlap before time t, where
t — 00?

° 8tp5\72(x, t) =
—(3) tiog(9 Phe(x, )

e Conclusion: p%’é(x, t) = c(M(x) log(t)~"("=1)/2 a5 t — 0
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° p§1) ~ log(t)/t (Bramson-Lebowitz - a rigorous version of

Smoluchowski theory)
@ Bootstrapping to this:

@ |If there are n particles at time t at positions xq, X2, . . . , Xp,
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Conclusions

o CABMjy for 0 < 0 < 1 is exactly solvable in one dimension
@ Is there a reason? (Hecke algebras.)

@ Is there a deep reason for the coincidence of the laws of
ABM'’s and the scaling limits of the law of Ginibre real
eigenvalues both in the bulk and at the edge?

e Coalescing/annihilating Brownian disks in two dimensions can
be studied using a probabilistic argument, which generalizes
and rigorizes the original Smoluchowski theory.

@ Asymptotically exact non-linear scaling can be established
both for d =1 and d = 2.
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