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Annihilating/Coalescing Brownian motions

Annihilating BM’s

Particles (balls for d > 1)
perform independent BM’s on
Rd until they meet

At the moment of collision
particles instantly annihilate
(prob. θ) or coalesce (prob.
1− θ)

ABM’s: θ = 1; CBM’s: θ = 0

Discrete realisation: domain
walls in the q =

(
1 + 1

θ

)
-state

dynamic Potts model at T = 0

Correlation functions:
ρ
(n)
t (x1, . . . , xn)ddx1 . . . d

dxn

Dubna CNES, April 2018



Outline The model One dimension Two dimensions Conclusions

Annihilating/Coalescing Brownian motions

Annihilating BM’s

Particles (balls for d > 1)
perform independent BM’s on
Rd until they meet

At the moment of collision
particles instantly annihilate
(prob. θ) or coalesce (prob.
1− θ)

ABM’s: θ = 1; CBM’s: θ = 0

Discrete realisation: domain
walls in the q =

(
1 + 1

θ

)
-state

dynamic Potts model at T = 0

Correlation functions:
ρ
(n)
t (x1, . . . , xn)ddx1 . . . d

dxn

Dubna CNES, April 2018



Outline The model One dimension Two dimensions Conclusions

Annihilating/Coalescing Brownian motions

Annihilating BM’s

Particles (balls for d > 1)
perform independent BM’s on
Rd until they meet

At the moment of collision
particles instantly annihilate
(prob. θ) or coalesce (prob.
1− θ)

ABM’s: θ = 1; CBM’s: θ = 0

Discrete realisation: domain
walls in the q =

(
1 + 1

θ

)
-state

dynamic Potts model at T = 0

Correlation functions:
ρ
(n)
t (x1, . . . , xn)ddx1 . . . d

dxn

Dubna CNES, April 2018



Outline The model One dimension Two dimensions Conclusions

Annihilating/Coalescing Brownian motions

Annihilating BM’s

Particles (balls for d > 1)
perform independent BM’s on
Rd until they meet

At the moment of collision
particles instantly annihilate
(prob. θ) or coalesce (prob.
1− θ)

ABM’s: θ = 1; CBM’s: θ = 0

Discrete realisation: domain
walls in the q =

(
1 + 1

θ

)
-state

dynamic Potts model at T = 0

Correlation functions:
ρ
(n)
t (x1, . . . , xn)ddx1 . . . d

dxn

Dubna CNES, April 2018



Outline The model One dimension Two dimensions Conclusions

Annihilating/Coalescing Brownian motions

Annihilating BM’s

Particles (balls for d > 1)
perform independent BM’s on
Rd until they meet

At the moment of collision
particles instantly annihilate
(prob. θ) or coalesce (prob.
1− θ)

ABM’s: θ = 1; CBM’s: θ = 0

Discrete realisation: domain
walls in the q =

(
1 + 1

θ

)
-state

dynamic Potts model at T = 0

Correlation functions:
ρ
(n)
t (x1, . . . , xn)ddx1 . . . d

dxn

Dubna CNES, April 2018



Outline The model One dimension Two dimensions Conclusions

Statistics of ABM’s, CBM’s

Some contributors: Smoluchowski, Glauber, Bramson,
Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz,
Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham,
Masser

d = 1: ρ
(1)
t ∼ t−1/2

d = 2: ρ
(1)
t ∼ log(t)/t

d > 2: ρ
(1)
t ∼ 1/t

Dynamical RG analysis (with R. Rajesh and C. Connaughton):

d = 1: ρ
(n)
t ∼ t−

n
2−

n(n−1)
4

d = 2: ρ
(n)
t ∼

(
log(t)

t

)n
(log(t))−

n(n−1)
2

Aim: confirm γn = n(n−1)
2 - the spectrum of anomalous

dimensions - rigorously
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Mean field analysis

ρ̇(1) = − (1−θ+2θ)
2 λρ(1) 2

Large-t asymptotic: ρ(1) ∼ 2
1+θ

1
λt

ρ(n) ∼ ρ(1) n ∼ t−n

These answers are wrong for d = 1 (ρ(1) ∼ t−1/2) and d = 2

(ρ(1) ∼ log(t)
t )

Smoluchowski theory: λ ∼ t−1/2 for d = 1; λ ∼ 1/ log(t) for
d = 2

This fixes the answers for n = 1, but does not capture the
non-linear scaling for n > 1

Exact equations: ρ̇(n) = Fn[ρ(n), ρ(n+1)] (Hopf chain)
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Exact solvability (coalescing case)

Idea: find a set of observables (Φ(n))n≥1 such that
1 Φ(n)’s determine ρn’s
2 Φ(n)’s satisfy closed equations

Realization: for n = 1, 2, . . . define

Φ
(2n)
t (x1, . . . , x2n) := Prob(Nt(x2i−1, x2i ) = 0, i = 1, . . . n)

Observe:
1

(
∂t −

∑2n
k=1 ∂

2
k

)
Φ

(2n)
t = 0 for x1 < . . . < x2n

2 Φ
(2n)
t (. . . , xk = xk+1, . . .) = Φ

(2n−2)
t (. . . , xk−1, xk+2, . . .)

3 ρ
(n)
t (x1, x3, . . . , x

2n−1) =(∏n
k=1(−∂2k)Φ

(2n)
t

)
|(x2m=x2m−1,m=1,2,...,n)
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Solution

Claim: Φ
(2n)
t (x1, . . . , x2n) = Pf1≤i<j≤2n

(
Φ
(2)
t (xi , xj)

)

Recall: if M = −MT - an antisymmetric 2n × 2n matrix,
then the Pfaffian of M is Pf(M) = ±

√
det(M)

Compare this with correlation functions for free fermions

Correlation functions can be obtained by differentiation:

1 ρ
(n)
t (x1, . . . , xn) = Pf1≤i,≤n(Kt(xi , xj))

2 Kt is a 2-by-2 matrix kernel of the form

Kt(x , y) =

(
Φ

(2)
t (x , y) ∂2Φ

(2)
t (x , y)

∂1Φ
(2)
t (x , y) ∂1∂2Φ

(2)
t (x , y)

)
for x < y

Distributions of particles of this type are called Pfaffian point
processes

Dubna CNES, April 2018
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Observables for general θ

Nt(a, b) = number of particles in (a, b) at time t.

For 0 ≤ θ ≤ 1 define

Φ
(2n)
t (x1, . . . , x2n) = E

 n∏
j=1

(−θ)Nt(y2j−1,y2j )


θ = 1: ‘spins’ for ABM’s; θ = 0: empty interval indicators for
CBM’s

Φ
(2n)
t solves linear PDE with BC’s in terms of Φ

(2n−2)
t

The solution is a Pfaffian for any deterministic or random
Poisson initial conditions

Compare Φ
(2n)
t with similar observables for ASEP (Borodin,

Corwin, Sasamoto)

Dubna CNES, April 2018
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θ = 1: ‘spins’ for ABM’s; θ = 0: empty interval indicators for
CBM’s

Φ
(2n)
t solves linear PDE with BC’s in terms of Φ

(2n−2)
t

The solution is a Pfaffian for any deterministic or random
Poisson initial conditions

Compare Φ
(2n)
t with similar observables for ASEP (Borodin,

Corwin, Sasamoto)
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Interesting particular cases

Initial condition: particles start from every point of R at
t = 0

Φ
(2)
t (y , z) = 2

1+θ erfc
(

y−z√
t

)
For θ = 1, this is the bulk scaling limit of the law of real
eigenvalues in the real Ginibre ensemble (Borodin-Sinclair,
Forrester-Nagao)

ρ
(n)
t (x1, . . . , xK )

t↑∞∼ cnt
− n

2−
n(n−1)

4
∏

i<j |xi − xj | - nonlinear
scaling

Initial condition: particles start from every point of R− at
t = 0

Φ
(2)
t (y , z) = 2

2+θF
(

y
2
√
t
, z
2
√
t

)
K (y , z) = 1 +

∫ z

y

∫ y

−∞
u−v√
2π
e−

(u−v)2

2 erfc
(

u+v√
2

)
dudv

For θ = 0, this is the edge scaling limit of the law of real
eigenvalues in the real Ginibre ensemble (Borodin-Sinclair)
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Non-coalescing Brownian disks in 2d

Z2

s(t)

t

O(1)
O(1)

O(s1/2) O(s1/2)

O(1)
O(t1/2)O(t1/2)

O(s1/2)

Typical non-collision event

What is the probability

p
(n)
NC (x, t) that n non-interacting

Brownian disks of radius 1 with
initial positions x1, x2, . . . , xn do
not overlap before time t, where
t →∞?

∂tp
(n)
NC (x, t) =

−
(n
2

)
1

t log(t)p
(n)
NC (x, t)

Conclusion: p
(n)
NC (x, t) = c(n)(x) log(t)−n(n−1)/2 as t →∞
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Coalescing Brownian disks in 2d

ρ
(1)
t ∼ log(t)/t (Bramson-Lebowitz - a rigorous version of

Smoluchowski theory)

Bootstrapping to this:
1 If there are n particles at time t at positions x1, x2, . . . , xn,

there must exist n particles at time t − s(t) at well separated
positions, which do not meet before t

2 s(t) ∼ t/ log(t)α, s(t)→∞ as t →∞; s(t) << t
3 ρ

(n)
t−s(t) ∼ ρ

(1) n
t−s(t)

4 ρ
(n)
t ∼ p

(n)
NC (s(t))ρ

(n)
t−s(t)

5 ρ
(n)
t ∼ p

(n)
NC (t)ρ

(1) n
t ∼ log(t)n−n(n−1)/2/tn
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Conclusions

CABMθ for 0 ≤ θ ≤ 1 is exactly solvable in one dimension

Is there a reason? (Hecke algebras.)

Is there a deep reason for the coincidence of the laws of
ABM’s and the scaling limits of the law of Ginibre real
eigenvalues both in the bulk and at the edge?

Coalescing/annihilating Brownian disks in two dimensions can
be studied using a probabilistic argument, which generalizes
and rigorizes the original Smoluchowski theory.

Asymptotically exact non-linear scaling can be established
both for d = 1 and d = 2.
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