Strong fluctuation effects for annihilating/coalescing Brownian particles

Oleg Zaboronski
(In collaboration with R. Tribe, B. Garrod, M. Poplavskyi)

Department of Mathematics, University of Warwick

$$
\text { April } 18,2018
$$

Outline

(1) The model
(2) One dimension
(3) Two dimensions
(4) Conclusions

Dubna CNES, April 2018

Annihilating/Coalescing Brownian motions

- Particles (balls for $d>1$) perform independent BM's on \mathbb{R}^{d} until they meet

Annihilating BM's

Annihilating/Coalescing Brownian motions

Annihilating BM's

Annihilating/Coalescing Brownian motions

- Particles (balls for $d>1$) perform independent BM's on \mathbb{R}^{d} until they meet
- At the moment of collision particles instantly annihilate (prob. θ) or coalesce (prob. $1-\theta$)
- ABM's: $\theta=1$; CBM's: $\theta=0$

Annihilating BM's

Annihilating/Coalescing Brownian motions

- Particles (balls for $d>1$) perform independent BM's on \mathbb{R}^{d} until they meet
- At the moment of collision particles instantly annihilate (prob. θ) or coalesce (prob. $1-\theta$)
- ABM's: $\theta=1$; CBM's: $\theta=0$
- Discrete realisation: domain walls in the $q=\left(1+\frac{1}{\theta}\right)$-state dynamic Potts model at $T=0$

Annihilating BM's

Annihilating/Coalescing Brownian motions

- Particles (balls for $d>1$) perform independent BM's on \mathbb{R}^{d} until they meet
- At the moment of collision particles instantly annihilate (prob. θ) or coalesce (prob. $1-\theta$)
- ABM's: $\theta=1$; CBM's: $\theta=0$
- Discrete realisation: domain walls in the $q=\left(1+\frac{1}{\theta}\right)$-state dynamic Potts model at $T=0$
- Correlation functions: $\rho_{t}^{(n)}\left(x_{1}, \ldots, x_{n}\right) d^{d} x_{1} \ldots d^{d} x_{n}$

Annihilating BM's

Statistics of ABM's, CBM's

- Some contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham, Masser

Statistics of ABM's, CBM's

- Some contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham, Masser
- $d=1: \rho_{t}^{(1)} \sim t^{-1 / 2}$

Statistics of ABM's, CBM's

- Some contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham, Masser
- $d=1: \rho_{t}^{(1)} \sim t^{-1 / 2}$
- $d=2: \rho_{t}^{(1)} \sim \log (t) / t$

Statistics of ABM's, CBM's

- Some contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham, Masser
- $d=1: \rho_{t}^{(1)} \sim t^{-1 / 2}$
- $d=2: \rho_{t}^{(1)} \sim \log (t) / t$
- $d>2: \rho_{t}^{(1)} \sim 1 / t$

Statistics of ABM's, CBM's

- Some contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham, Masser
- $d=1: \rho_{t}^{(1)} \sim t^{-1 / 2}$
- $d=2: \rho_{t}^{(1)} \sim \log (t) / t$
- $d>2: \rho_{t}^{(1)} \sim 1 / t$
- Dynamical RG analysis (with R. Rajesh and C. Connaughton):
- $d=1: \rho_{t}^{(n)} \sim t^{-\frac{n}{2}-\frac{n(n-1)}{4}}$
- $d=2: \rho_{t}^{(n)} \sim\left(\frac{\log (t)}{t}\right)^{n}(\log (t))^{-\frac{n(n-1)}{2}}$

Statistics of ABM's, CBM's

- Some contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham, Masser
- $d=1: \rho_{t}^{(1)} \sim t^{-1 / 2}$
- $d=2: \rho_{t}^{(1)} \sim \log (t) / t$
- $d>2: \rho_{t}^{(1)} \sim 1 / t$
- Dynamical RG analysis (with R. Rajesh and C. Connaughton):
- $d=1: \rho_{t}^{(n)} \sim t^{-\frac{n}{2}-\frac{n(n-1)}{4}}$
- $d=2: \rho_{t}^{(n)} \sim\left(\frac{\log (t)}{t}\right)^{n}(\log (t))^{-\frac{n(n-1)}{2}}$
- Aim: confirm $\gamma_{n}=\frac{n(n-1)}{2}$ - the spectrum of anomalous dimensions - rigorously

Mean field analysis

- $\dot{\rho}^{(1)}=-\frac{(1-\theta+2 \theta)}{2} \lambda \rho^{(1) 2}$

Mean field analysis

- $\dot{\rho}^{(1)}=-\frac{(1-\theta+2 \theta)}{2} \lambda \rho^{(1) 2}$
- Large- t asymptotic: $\rho^{(1)} \sim \frac{2}{1+\theta} \frac{1}{\lambda t}$

Mean field analysis

- $\dot{\rho}^{(1)}=-\frac{(1-\theta+2 \theta)}{2} \lambda \rho^{(1) 2}$
- Large- t asymptotic: $\rho^{(1)} \sim \frac{2}{1+\theta} \frac{1}{\lambda t}$
- $\rho^{(n)} \sim \rho^{(1) n} \sim t^{-n}$

Mean field analysis

- $\dot{\rho}^{(1)}=-\frac{(1-\theta+2 \theta)}{2} \lambda \rho^{(1) 2}$
- Large- t asymptotic: $\rho^{(1)} \sim \frac{2}{1+\theta} \frac{1}{\lambda t}$
- $\rho^{(n)} \sim \rho^{(1) n} \sim t^{-n}$
- These answers are wrong for $d=1\left(\rho^{(1)} \sim t^{-1 / 2}\right)$ and $d=2$ $\left(\rho^{(1)} \sim \frac{\log (t)}{t}\right)$

Mean field analysis

- $\dot{\rho}^{(1)}=-\frac{(1-\theta+2 \theta)}{2} \lambda \rho^{(1) 2}$
- Large- t asymptotic: $\rho^{(1)} \sim \frac{2}{1+\theta} \frac{1}{\lambda t}$
- $\rho^{(n)} \sim \rho^{(1) n} \sim t^{-n}$
- These answers are wrong for $d=1\left(\rho^{(1)} \sim t^{-1 / 2}\right)$ and $d=2$ $\left(\rho^{(1)} \sim \frac{\log (t)}{t}\right)$
- Smoluchowski theory: $\lambda \sim t^{-1 / 2}$ for $d=1 ; \lambda \sim 1 / \log (t)$ for $d=2$

Mean field analysis

- $\dot{\rho}^{(1)}=-\frac{(1-\theta+2 \theta)}{2} \lambda \rho^{(1) 2}$
- Large- t asymptotic: $\rho^{(1)} \sim \frac{2}{1+\theta} \frac{1}{\lambda t}$
- $\rho^{(n)} \sim \rho^{(1) n} \sim t^{-n}$
- These answers are wrong for $d=1\left(\rho^{(1)} \sim t^{-1 / 2}\right)$ and $d=2$ $\left(\rho^{(1)} \sim \frac{\log (t)}{t}\right)$
- Smoluchowski theory: $\lambda \sim t^{-1 / 2}$ for $d=1 ; \lambda \sim 1 / \log (t)$ for $d=2$
- This fixes the answers for $n=1$, but does not capture the non-linear scaling for $n>1$

Mean field analysis

- $\dot{\rho}^{(1)}=-\frac{(1-\theta+2 \theta)}{2} \lambda \rho^{(1) 2}$
- Large- t asymptotic: $\rho^{(1)} \sim \frac{2}{1+\theta} \frac{1}{\lambda t}$
- $\rho^{(n)} \sim \rho^{(1) n} \sim t^{-n}$
- These answers are wrong for $d=1\left(\rho^{(1)} \sim t^{-1 / 2}\right)$ and $d=2$ $\left(\rho^{(1)} \sim \frac{\log (t)}{t}\right)$
- Smoluchowski theory: $\lambda \sim t^{-1 / 2}$ for $d=1 ; \lambda \sim 1 / \log (t)$ for $d=2$
- This fixes the answers for $n=1$, but does not capture the non-linear scaling for $n>1$
- Exact equations: $\dot{\rho}^{(n)}=F_{n}\left[\rho^{(n)}, \rho^{(n+1)}\right]$ (Hopf chain)

Exact solvability (coalescing case)

- Idea: find a set of observables $\left(\Phi^{(n)}\right)_{n \geq 1}$ such that
(1) $\Phi^{(n)}$'s determine ρ_{n} 's
(2) $\Phi^{(n)}$'s satisfy closed equations

Exact solvability (coalescing case)

- Idea: find a set of observables $\left(\Phi^{(n)}\right)_{n \geq 1}$ such that
(1) $\Phi^{(n)}$'s determine ρ_{n} 's
(2) $\Phi^{(n)}$'s satisfy closed equations
- Realization: for $n=1,2, \ldots$ define

$$
\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right):=\operatorname{Prob}\left(N_{t}\left(x_{2 i-1}, x_{2 i}\right)=0, i=1, \ldots n\right)
$$

Exact solvability (coalescing case)

- Idea: find a set of observables $\left(\Phi^{(n)}\right)_{n \geq 1}$ such that
(1) $\Phi^{(n)}$'s determine ρ_{n} 's
(2) $\Phi^{(n)}$'s satisfy closed equations
- Realization: for $n=1,2, \ldots$ define

$$
\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right):=\operatorname{Prob}\left(N_{t}\left(x_{2 i-1}, x_{2 i}\right)=0, i=1, \ldots n\right)
$$

- Observe:
(1) $\left(\partial_{t}-\sum_{k=1}^{2 n} \partial_{k}^{2}\right) \Phi_{t}^{(2 n)}=0$ for $x_{1}<\ldots<x_{2 n}$

Exact solvability (coalescing case)

- Idea: find a set of observables $\left(\Phi^{(n)}\right)_{n \geq 1}$ such that
(1) $\Phi^{(n)}$'s determine ρ_{n} 's
(2) $\Phi^{(n)}$'s satisfy closed equations
- Realization: for $n=1,2, \ldots$ define

$$
\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right):=\operatorname{Prob}\left(N_{t}\left(x_{2 i-1}, x_{2 i}\right)=0, i=1, \ldots n\right)
$$

- Observe:
(1) $\left(\partial_{t}-\sum_{k=1}^{2 n} \partial_{k}^{2}\right) \Phi_{t}^{(2 n)}=0$ for $x_{1}<\ldots<x_{2 n}$
(2) $\Phi_{t}^{(2 n)}\left(\ldots, x_{k}=x_{k+1}, \ldots\right)=\Phi_{t}^{(2 n-2)}\left(\ldots, x_{k-1}, x_{k+2}, \ldots\right)$

Exact solvability (coalescing case)

- Idea: find a set of observables $\left(\Phi^{(n)}\right)_{n \geq 1}$ such that
(1) $\Phi^{(n)}$'s determine ρ_{n} 's
(2) $\Phi^{(n)}$'s satisfy closed equations
- Realization: for $n=1,2, \ldots$ define

$$
\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right):=\operatorname{Prob}\left(N_{t}\left(x_{2 i-1}, x_{2 i}\right)=0, i=1, \ldots n\right)
$$

- Observe:
(1) $\left(\partial_{t}-\sum_{k=1}^{2 n} \partial_{k}^{2}\right) \Phi_{t}^{(2 n)}=0$ for $x_{1}<\ldots<x_{2 n}$
(2) $\Phi_{t}^{(2 n)}\left(\ldots, x_{k}=x_{k+1}, \ldots\right)=\Phi_{t}^{(2 n-2)}\left(\ldots, x_{k-1}, x_{k+2}, \ldots\right)$
(3) $\rho_{t}^{(n)}\left(x_{1}, x_{3}, \ldots, x^{2 n-1}\right)=$

$$
\left.\left(\prod_{k=1}^{n}\left(-\partial_{2 k}\right) \Phi_{t}^{(2 n)}\right)\right|_{\left(x_{2 m}=x_{2 m-1}, m=1,2, \ldots, n\right)}
$$

Solution

- Claim: $\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)=\operatorname{Pf}_{1 \leq i<j \leq 2 n}\left(\Phi_{t}^{(2)}\left(x_{i}, x_{j}\right)\right)$

Solution

- Claim: $\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)=\operatorname{Pf}_{1 \leq i<j \leq 2 n}\left(\Phi_{t}^{(2)}\left(x_{i}, x_{j}\right)\right)$
- Recall: if $M=-M^{T}$ - an antisymmetric $2 n \times 2 n$ matrix, then the Pfaffian of M is $\operatorname{Pf}(M)= \pm \sqrt{\operatorname{det}(M)}$

Solution

- Claim: $\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)=\operatorname{Pf}_{1 \leq i<j \leq 2 n}\left(\Phi_{t}^{(2)}\left(x_{i}, x_{j}\right)\right)$
- Recall: if $M=-M^{T}$ - an antisymmetric $2 n \times 2 n$ matrix, then the Pfaffian of M is $\operatorname{Pf}(M)= \pm \sqrt{\operatorname{det}(M)}$
- Compare this with correlation functions for free fermions
- Correlation functions can be obtained by differentiation:
(1) $\rho_{t}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pf}_{1 \leq i, \leq n}\left(K_{t}\left(x_{i}, x_{j}\right)\right)$

Solution

- Claim: $\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)=\operatorname{Pf}_{1 \leq i<j \leq 2 n}\left(\Phi_{t}^{(2)}\left(x_{i}, x_{j}\right)\right)$
- Recall: if $M=-M^{T}$ - an antisymmetric $2 n \times 2 n$ matrix, then the Pfaffian of M is $\operatorname{Pf}(M)= \pm \sqrt{\operatorname{det}(M)}$
- Compare this with correlation functions for free fermions
- Correlation functions can be obtained by differentiation:
(1) $\rho_{t}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pf}_{1 \leq i, \leq n}\left(K_{t}\left(x_{i}, x_{j}\right)\right)$
(2) K_{t} is a 2-by-2 matrix kernel of the form

$$
K_{t}(x, y)=\left(\begin{array}{cc}
\Phi_{t}^{(2)}(x, y) & \partial_{2} \Phi_{t}^{(2)}(x, y) \\
\partial_{1} \Phi_{t}^{(2)}(x, y) & \partial_{1} \partial_{2} \Phi_{t}^{(2)}(x, y)
\end{array}\right) \quad \text { for } x<y
$$

Solution

- Claim: $\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)=\operatorname{Pf}_{1 \leq i<j \leq 2 n}\left(\Phi_{t}^{(2)}\left(x_{i}, x_{j}\right)\right)$
- Recall: if $M=-M^{T}$ - an antisymmetric $2 n \times 2 n$ matrix, then the Pfaffian of M is $\operatorname{Pf}(M)= \pm \sqrt{\operatorname{det}(M)}$
- Compare this with correlation functions for free fermions
- Correlation functions can be obtained by differentiation:
(1) $\rho_{t}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pf}_{1 \leq i, \leq n}\left(K_{t}\left(x_{i}, x_{j}\right)\right)$
(2) K_{t} is a 2-by-2 matrix kernel of the form

$$
K_{t}(x, y)=\left(\begin{array}{cc}
\Phi_{t}^{(2)}(x, y) & \partial_{2} \Phi_{t}^{(2)}(x, y) \\
\partial_{1} \Phi_{t}^{(2)}(x, y) & \partial_{1} \partial_{2} \Phi_{t}^{(2)}(x, y)
\end{array}\right) \quad \text { for } x<y
$$

- Distributions of particles of this type are called Pfaffian point processes

Observables for general θ

- $N_{t}(a, b)=$ number of particles in (a, b) at time t.

Observables for general θ

- $N_{t}(a, b)=$ number of particles in (a, b) at time t.
- For $0 \leq \theta \leq 1$ define

$$
\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)=\mathbb{E}\left(\prod_{j=1}^{n}(-\theta)^{N_{t}\left(y_{2 j-1}, y_{2 j}\right)}\right)
$$

Observables for general θ

- $N_{t}(a, b)=$ number of particles in (a, b) at time t.
- For $0 \leq \theta \leq 1$ define

$$
\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)=\mathbb{E}\left(\prod_{j=1}^{n}(-\theta)^{N_{t}\left(y_{2 j-1}, y_{2 j}\right)}\right)
$$

- $\theta=1$: 'spins' for ABM's; $\theta=0$: empty interval indicators for CBM's

Observables for general θ

- $N_{t}(a, b)=$ number of particles in (a, b) at time t.
- For $0 \leq \theta \leq 1$ define

$$
\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)=\mathbb{E}\left(\prod_{j=1}^{n}(-\theta)^{N_{t}\left(y_{2 j-1}, y_{2 j}\right)}\right)
$$

- $\theta=1$: 'spins' for ABM's; $\theta=0$: empty interval indicators for CBM's
- $\Phi_{t}^{(2 n)}$ solves linear PDE with BC's in terms of $\Phi_{t}^{(2 n-2)}$

Observables for general θ

- $N_{t}(a, b)=$ number of particles in (a, b) at time t.
- For $0 \leq \theta \leq 1$ define

$$
\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)=\mathbb{E}\left(\prod_{j=1}^{n}(-\theta)^{N_{t}\left(y_{2 j-1}, y_{2 j}\right)}\right)
$$

- $\theta=1$: 'spins' for ABM's; $\theta=0$: empty interval indicators for CBM's
- $\Phi_{t}^{(2 n)}$ solves linear PDE with BC's in terms of $\Phi_{t}^{(2 n-2)}$
- The solution is a Pfaffian for any deterministic or random Poisson initial conditions

Observables for general θ

- $N_{t}(a, b)=$ number of particles in (a, b) at time t.
- For $0 \leq \theta \leq 1$ define

$$
\Phi_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)=\mathbb{E}\left(\prod_{j=1}^{n}(-\theta)^{N_{t}\left(y_{2 j-1}, y_{2 j}\right)}\right)
$$

- $\theta=1$: 'spins' for ABM's; $\theta=0$: empty interval indicators for CBM's
- $\Phi_{t}^{(2 n)}$ solves linear PDE with BC's in terms of $\Phi_{t}^{(2 n-2)}$
- The solution is a Pfaffian for any deterministic or random Poisson initial conditions
- Compare $\Phi_{t}^{(2 n)}$ with similar observables for ASEP (Borodin, Corwin, Sasamoto)

Interesting particular cases

- Initial condition: particles start from every point of \mathbb{R} at $t=0$

Interesting particular cases

- Initial condition: particles start from every point of \mathbb{R} at $t=0$
- $\phi_{t}^{(2)}(y, z)=\frac{2}{1+\theta} \operatorname{erfc}\left(\frac{y-z}{\sqrt{t}}\right)$
- For $\theta=1$, this is the bulk scaling limit of the law of real eigenvalues in the real Ginibre ensemble (Borodin-Sinclair, Forrester-Nagao)

Interesting particular cases

- Initial condition: particles start from every point of \mathbb{R} at $t=0$
- $\Phi_{t}^{(2)}(y, z)=\frac{2}{1+\theta} \operatorname{erfc}\left(\frac{y-z}{\sqrt{t}}\right)$
- For $\theta=1$, this is the bulk scaling limit of the law of real eigenvalues in the real Ginibre ensemble (Borodin-Sinclair, Forrester-Nagao)
- $\rho_{t}^{(n)}\left(x_{1}, \ldots, x_{K}\right) \stackrel{t \uparrow \infty}{\sim} c_{n} t^{-\frac{n}{2}-\frac{n(n-1)}{4}} \prod_{i<j}\left|x_{i}-x_{j}\right|$ - nonlinear scaling

Interesting particular cases

- Initial condition: particles start from every point of \mathbb{R} at $t=0$
- $\Phi_{t}^{(2)}(y, z)=\frac{2}{1+\theta} \operatorname{erfc}\left(\frac{y-z}{\sqrt{t}}\right)$
- For $\theta=1$, this is the bulk scaling limit of the law of real eigenvalues in the real Ginibre ensemble (Borodin-Sinclair, Forrester-Nagao)
- $\rho_{t}^{(n)}\left(x_{1}, \ldots, x_{K}\right) \stackrel{t \uparrow \infty}{\sim} c_{n} t^{-\frac{n}{2}-\frac{n(n-1)}{4}} \prod_{i<j}\left|x_{i}-x_{j}\right|$ - nonlinear scaling
- Initial condition: particles start from every point of \mathbb{R}_{-}at $t=0$

Interesting particular cases

- Initial condition: particles start from every point of \mathbb{R} at $t=0$
- $\Phi_{t}^{(2)}(y, z)=\frac{2}{1+\theta} \operatorname{erfc}\left(\frac{y-z}{\sqrt{t}}\right)$
- For $\theta=1$, this is the bulk scaling limit of the law of real eigenvalues in the real Ginibre ensemble (Borodin-Sinclair, Forrester-Nagao)
- $\rho_{t}^{(n)}\left(x_{1}, \ldots, x_{K}\right) \stackrel{t \uparrow \infty}{\sim} c_{n} t^{-\frac{n}{2}-\frac{n(n-1)}{4}} \prod_{i<j}\left|x_{i}-x_{j}\right|$ - nonlinear scaling
- Initial condition: particles start from every point of \mathbb{R}_{-}at $t=0$
- $\Phi_{t}^{(2)}(y, z)=\frac{2}{2+\theta} F\left(\frac{y}{2 \sqrt{t}}, \frac{z}{2 \sqrt{t}}\right)$
- $K(y, z)=1+\int_{y}^{z} \int_{-\infty}^{y} \frac{u-v}{\sqrt{2 \pi}} e^{-\frac{(u-v)^{2}}{2}} \operatorname{erfc}\left(\frac{u+v}{\sqrt{2}}\right) d u d v$

Interesting particular cases

- Initial condition: particles start from every point of \mathbb{R} at $t=0$
- $\Phi_{t}^{(2)}(y, z)=\frac{2}{1+\theta} \operatorname{erfc}\left(\frac{y-z}{\sqrt{t}}\right)$
- For $\theta=1$, this is the bulk scaling limit of the law of real eigenvalues in the real Ginibre ensemble (Borodin-Sinclair, Forrester-Nagao)
- $\rho_{t}^{(n)}\left(x_{1}, \ldots, x_{K}\right) \stackrel{t \uparrow \infty}{\sim} c_{n} t^{-\frac{n}{2}-\frac{n(n-1)}{4}} \prod_{i<j}\left|x_{i}-x_{j}\right|$ - nonlinear scaling
- Initial condition: particles start from every point of $\mathbb{R}_{\text {- }}$ at $t=0$
- $\Phi_{t}^{(2)}(y, z)=\frac{2}{2+\theta} F\left(\frac{y}{2 \sqrt{t}}, \frac{z}{2 \sqrt{t}}\right)$
- $K(y, z)=1+\int_{y}^{z} \int_{-\infty}^{y} \frac{u-v}{\sqrt{2 \pi}} e^{-\frac{(u-v)^{2}}{2}} \operatorname{erfc}\left(\frac{u+v}{\sqrt{2}}\right) d u d v$
- For $\theta=0$, this is the edge scaling limit of the law of real eigenvalues in the real Ginibre ensemble (Borodin-Sinclair)

Non-coalescing Brownian disks in 2d

- What is the probability
$p_{N C}^{(n)}(\mathbf{x}, t)$ that n non-interacting Brownian disks of radius 1 with initial positions $x_{1}, x_{2}, \ldots, x_{n}$ do not overlap before time t, where $t \rightarrow \infty$?

Non-coalescing Brownian disks in 2d

Typical non-collision event

- What is the probability
$p_{N C}^{(n)}(\mathbf{x}, t)$ that n non-interacting Brownian disks of radius 1 with initial positions $x_{1}, x_{2}, \ldots, x_{n}$ do not overlap before time t, where $t \rightarrow \infty$?
- $\partial_{t} p_{N C}^{(n)}(\mathbf{x}, t)=$
$-\binom{n}{2} \frac{1}{t \log (t)} p_{N C}^{(n)}(\mathbf{x}, t)$

Non-coalescing Brownian disks in 2d

Typical non-collision event

- What is the probability
$p_{N C}^{(n)}(\mathbf{x}, t)$ that n non-interacting Brownian disks of radius 1 with initial positions $x_{1}, x_{2}, \ldots, x_{n}$ do not overlap before time t, where $t \rightarrow \infty$?
- $\partial_{t} p_{N C}^{(n)}(\mathbf{x}, t)=$
$-\binom{n}{2} \frac{1}{t \log (t)} p_{N C}^{(n)}(\mathbf{x}, t)$
- Conclusion: $p_{N C}^{(n)}(\mathbf{x}, t)=c^{(n)}(\mathbf{x}) \log (t)^{-n(n-1) / 2}$ as $t \rightarrow \infty$

Coalescing Brownian disks in 2d

- $\rho_{t}^{(1)} \sim \log (t) / t$ (Bramson-Lebowitz - a rigorous version of Smoluchowski theory)

Coalescing Brownian disks in 2d

- $\rho_{t}^{(1)} \sim \log (t) / t$ (Bramson-Lebowitz - a rigorous version of Smoluchowski theory)
- Bootstrapping to this:
(1) If there are n particles at time t at positions $x_{1}, x_{2}, \ldots, x_{n}$, there must exist n particles at time $t-s(t)$ at well separated positions, which do not meet before t

Coalescing Brownian disks in 2d

- $\rho_{t}^{(1)} \sim \log (t) / t$ (Bramson-Lebowitz - a rigorous version of Smoluchowski theory)
- Bootstrapping to this:
(1) If there are n particles at time t at positions $x_{1}, x_{2}, \ldots, x_{n}$, there must exist n particles at time $t-s(t)$ at well separated positions, which do not meet before t
(2) $s(t) \sim t / \log (t)^{\alpha}, s(t) \rightarrow \infty$ as $t \rightarrow \infty ; s(t) \ll t$

Coalescing Brownian disks in 2d

- $\rho_{t}^{(1)} \sim \log (t) / t$ (Bramson-Lebowitz - a rigorous version of Smoluchowski theory)
- Bootstrapping to this:
(1) If there are n particles at time t at positions $x_{1}, x_{2}, \ldots, x_{n}$, there must exist n particles at time $t-s(t)$ at well separated positions, which do not meet before t
(2) $s(t) \sim t / \log (t)^{\alpha}, s(t) \rightarrow \infty$ as $t \rightarrow \infty ; s(t) \ll t$
(3) $\rho_{t-s(t)}^{(n)} \sim \rho_{t-s(t)}^{(1) n}$

Coalescing Brownian disks in 2d

- $\rho_{t}^{(1)} \sim \log (t) / t$ (Bramson-Lebowitz - a rigorous version of Smoluchowski theory)
- Bootstrapping to this:
(1) If there are n particles at time t at positions $x_{1}, x_{2}, \ldots, x_{n}$, there must exist n particles at time $t-s(t)$ at well separated positions, which do not meet before t
(2) $s(t) \sim t / \log (t)^{\alpha}, s(t) \rightarrow \infty$ as $t \rightarrow \infty ; s(t) \ll t$
(3) $\rho_{t-s(t)}^{(n)} \sim \rho_{t-s(t)}^{(1) n}$
(1) $\rho_{t}^{(n)} \sim p_{N C}^{(n)}(s(t)) \rho_{t-s(t)}^{(n)}$

Coalescing Brownian disks in 2d

- $\rho_{t}^{(1)} \sim \log (t) / t$ (Bramson-Lebowitz - a rigorous version of Smoluchowski theory)
- Bootstrapping to this:
(1) If there are n particles at time t at positions $x_{1}, x_{2}, \ldots, x_{n}$, there must exist n particles at time $t-s(t)$ at well separated positions, which do not meet before t
(2) $s(t) \sim t / \log (t)^{\alpha}, s(t) \rightarrow \infty$ as $t \rightarrow \infty ; s(t) \ll t$
(3) $\rho_{t-s(t)}^{(n)} \sim \rho_{t-s(t)}^{(1) n}$
(1) $\rho_{t}^{(n)} \sim p_{N C}^{(n)}(s(t)) \rho_{t-s(t)}^{(n)}$
(5) $\rho_{t}^{(n)} \sim p_{N C}^{(n)}(t) \rho_{t}^{(1) n} \sim \log (t)^{n-n(n-1) / 2} / t^{n}$

Conclusions

- CABM_{θ} for $0 \leq \theta \leq 1$ is exactly solvable in one dimension

Conclusions

- CABM_{θ} for $0 \leq \theta \leq 1$ is exactly solvable in one dimension
- Is there a reason? (Hecke algebras.)

Conclusions

- CABM_{θ} for $0 \leq \theta \leq 1$ is exactly solvable in one dimension
- Is there a reason? (Hecke algebras.)
- Is there a deep reason for the coincidence of the laws of ABM's and the scaling limits of the law of Ginibre real eigenvalues both in the bulk and at the edge?

Conclusions

- CABM_{θ} for $0 \leq \theta \leq 1$ is exactly solvable in one dimension
- Is there a reason? (Hecke algebras.)
- Is there a deep reason for the coincidence of the laws of ABM's and the scaling limits of the law of Ginibre real eigenvalues both in the bulk and at the edge?
- Coalescing/annihilating Brownian disks in two dimensions can be studied using a probabilistic argument, which generalizes and rigorizes the original Smoluchowski theory.

Conclusions

- CABM_{θ} for $0 \leq \theta \leq 1$ is exactly solvable in one dimension
- Is there a reason? (Hecke algebras.)
- Is there a deep reason for the coincidence of the laws of ABM's and the scaling limits of the law of Ginibre real eigenvalues both in the bulk and at the edge?
- Coalescing/annihilating Brownian disks in two dimensions can be studied using a probabilistic argument, which generalizes and rigorizes the original Smoluchowski theory.
- Asymptotically exact non-linear scaling can be established both for $d=1$ and $d=2$.

References

(1) Multi-Scaling of the n-Point Density Function for Coalescing Brownian Motions, CMP Vol. 268, No. 3, (2006)
(2) Pfaffian formulae for one dimensional coalescing and annihilating systems, EJP, vol. 16, Article 76 (2011)
(3) Interacting particle systems on \mathbf{Z} as Pfaffian point processes I-annihilating and coalescing random walks, arXiv:1507.01843
(9) Interacting particle systems on \mathbf{Z} as Pfaffian point processes II - coalescing branching random walks and annihilating random walks with immigration, arXiv:1605.09668
(3) Multi-point correlations for two dimensional coalescing random walks, arXiv:1707.06250

