Strong fluctuation effects for annihilating/coalescing Brownian particles

Oleg Zaboronski (In collaboration with R. Tribe, B. Garrod, M. Poplavskyi)

Department of Mathematics, University of Warwick

April 18, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

Dubna CNES, April 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Annihilating/Coalescing Brownian motions

 Particles (balls for d > 1) perform independent BM's on R^d until they meet

・ロト ・四ト ・ヨト ・ヨト

Э

Annihilating BM's

Annihilating/Coalescing Brownian motions

- Particles (balls for d > 1) perform independent BM's on R^d until they meet
- At the moment of collision particles instantly annihilate (prob. θ) or coalesce (prob. 1 - θ)

イロト イポト イヨト イヨト

Annihilating BM's

Annihilating/Coalescing Brownian motions

- Particles (balls for d > 1) perform independent BM's on \mathbb{R}^d until they meet
- At the moment of collision particles instantly annihilate (prob. θ) or coalesce (prob. 1 - θ)
- ABM's: $\theta = 1$; CBM's: $\theta = 0$

イロト イポト イヨト イヨト

Annihilating BM's

Annihilating/Coalescing Brownian motions

- Particles (balls for d > 1) perform independent BM's on \mathbb{R}^d until they meet
- At the moment of collision particles instantly annihilate (prob. θ) or coalesce (prob. 1 - θ)
- ABM's: $\theta = 1$; CBM's: $\theta = 0$
- **Discrete realisation**: domain walls in the $q = (1 + \frac{1}{\theta})$ -state dynamic Potts model at T = 0

イロト 不同ト イヨト イヨト

Annihilating BM's

Annihilating/Coalescing Brownian motions

Annihilating BM's

Dubna CNES, April 2018

- Particles (balls for d > 1) perform independent BM's on R^d until they meet
- At the moment of collision particles instantly annihilate (prob. θ) or coalesce (prob. 1θ)
- ABM's: $\theta = 1$; CBM's: $\theta = 0$
- **Discrete realisation**: domain walls in the $q = (1 + \frac{1}{\theta})$ -state dynamic Potts model at T = 0
- Correlation functions: $\rho_t^{(n)}(x_1, \dots, x_n) d^d x_1 \dots d^d x_n$

イロト 不同 トイヨト イヨト

Statistics of ABM's, CBM's

 Some contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham, Masser

<ロト < 同ト < 回ト < 回ト = 三日

Statistics of ABM's, CBM's

 Some contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham, Masser

<ロト < 同ト < 回ト < 回ト = 三日

•
$$d = 1$$
: $\rho_t^{(1)} \sim t^{-1/2}$

Statistics of ABM's, CBM's

 Some contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham, Masser

<ロト < 同ト < 回ト < 回ト = 三日

•
$$d = 1$$
: $\rho_t^{(1)} \sim t^{-1/2}$

•
$$d = 2$$
: $\rho_t^{(1)} \sim \log(t)/t$

Statistics of ABM's, CBM's

 Some contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham, Masser

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- d = 1: $\rho_t^{(1)} \sim t^{-1/2}$ • d = 2: $\rho_t^{(1)} \sim \log(t)/t$
- d > 2: $\rho_t^{(1)} \sim 1/t$

Statistics of ABM's, CBM's

- Some contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham, Masser
- d = 1: $\rho_t^{(1)} \sim t^{-1/2}$
- $d = 2: \ \rho_t^{(1)} \sim \log(t)/t$
- d > 2: $\rho_t^{(1)} \sim 1/t$
- Dynamical RG analysis (with R. Rajesh and C. Connaughton):

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

•
$$d = 1$$
: $\rho_t^{(n)} \sim t^{-\frac{n}{2} - \frac{n(n-1)}{4}}$
• $d = 2$: $\rho_t^{(n)} \sim \left(\frac{\log(t)}{t}\right)^n (\log(t))^{-\frac{n(n-1)}{2}}$

Statistics of ABM's, CBM's

- Some contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Hakim, Pasquier, ben Avraham, Masser
- d = 1: $\rho_t^{(1)} \sim t^{-1/2}$
- $d = 2: \ \rho_t^{(1)} \sim \log(t)/t$
- d > 2: $\rho_t^{(1)} \sim 1/t$
- Dynamical RG analysis (with R. Rajesh and C. Connaughton):

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

•
$$d = 1: \rho_t^{(n)} \sim t^{-\frac{n}{2} - \frac{n(n-1)}{4}}$$

• $d = 2: \rho_t^{(n)} \sim \left(\frac{\log(t)}{t}\right)^n (\log(t))^{-\frac{n(n-1)}{2}}$

• Aim: confirm $\gamma_n = \frac{n(n-1)}{2}$ - the spectrum of anomalous dimensions - rigorously

•
$$\dot{\rho}^{(1)} = -\frac{(1-\theta+2\theta)}{2}\lambda\rho^{(1)}$$

Dubna CNES, April 2018

•
$$\dot{\rho}^{(1)} = -\frac{(1-\theta+2\theta)}{2}\lambda\rho^{(1)}$$

• Large-*t* asymptotic: $\rho^{(1)} \sim \frac{2}{1+\theta}\frac{1}{\lambda t}$

•
$$\dot{\rho}^{(1)} = -\frac{(1-\theta+2\theta)}{2}\lambda\rho^{(1)}$$

• Large-*t* asymptotic:
$$\rho^{(1)} \sim \frac{2}{1+\theta} \frac{1}{\lambda t}$$

•
$$\rho^{(n)} \sim \rho^{(1) \ n} \sim t^{-n}$$

•
$$\dot{\rho}^{(1)} = -\frac{(1-\theta+2\theta)}{2}\lambda\rho^{(1)}$$

• Large-t asymptotic:
$$ho^{(1)} \sim rac{2}{1+ heta} rac{1}{\lambda t}$$

•
$$\rho^{(n)} \sim \rho^{(1) \ n} \sim t^{-n}$$

• These answers are wrong for d=1 $(\rho^{(1)}\sim t^{-1/2})$ and d=2 $(\rho^{(1)}\sim \frac{\log(t)}{t})$

•
$$\dot{\rho}^{(1)} = -\frac{(1-\theta+2\theta)}{2}\lambda\rho^{(1)}$$

• Large-
$$t$$
 asymptotic: $ho^{(1)} \sim rac{2}{1+ heta} rac{1}{\lambda t}$

•
$$\rho^{(n)} \sim \rho^{(1) \ n} \sim t^{-n}$$

- These answers are wrong for d = 1 $(\rho^{(1)} \sim t^{-1/2})$ and d = 2 $(\rho^{(1)} \sim \frac{\log(t)}{t})$
- Smoluchowski theory: $\lambda \sim t^{-1/2}$ for $d=1; \ \lambda \sim 1/\log(t)$ for d=2

・ロト・(型ト・(ヨト・(ヨト)) ヨー うへつ

•
$$\dot{\rho}^{(1)} = -\frac{(1-\theta+2\theta)}{2}\lambda\rho^{(1)}$$

• Large-
$$t$$
 asymptotic: $ho^{(1)} \sim rac{2}{1+ heta} rac{1}{\lambda t}$

•
$$\rho^{(n)} \sim \rho^{(1) \ n} \sim t^{-n}$$

- These answers are wrong for d=1 $(\rho^{(1)}\sim t^{-1/2})$ and d=2 $(\rho^{(1)}\sim \frac{\log(t)}{t})$
- Smoluchowski theory: $\lambda \sim t^{-1/2}$ for $d=1; \ \lambda \sim 1/\log(t)$ for d=2
- This fixes the answers for *n* = 1, but does not capture the non-linear scaling for *n* > 1

•
$$\dot{\rho}^{(1)} = -\frac{(1-\theta+2\theta)}{2}\lambda\rho^{(1)}$$

• Large-
$$t$$
 asymptotic: $ho^{(1)} \sim rac{2}{1+ heta} rac{1}{\lambda t}$

•
$$\rho^{(n)} \sim \rho^{(1) \ n} \sim t^{-n}$$

- These answers are wrong for d=1 $(\rho^{(1)}\sim t^{-1/2})$ and d=2 $(\rho^{(1)}\sim \frac{\log(t)}{t})$
- Smoluchowski theory: $\lambda \sim t^{-1/2}$ for $d=1; \ \lambda \sim 1/\log(t)$ for d=2

・ロト・(型ト・(ヨト・(ヨト)) ヨー うへつ

- This fixes the answers for *n* = 1, but does not capture the non-linear scaling for *n* > 1
- Exact equations: $\dot{\rho}^{(n)} = F_n[\rho^{(n)}, \rho^{(n+1)}]$ (Hopf chain)

Exact solvability (coalescing case)

• Idea: find a set of observables $(\Phi^{(n)})_{n\geq 1}$ such that

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

- **(1)** $\Phi^{(n)}$'s determine ρ_n 's
- 2 $\Phi^{(n)}$'s satisfy closed equations

Exact solvability (coalescing case)

- Idea: find a set of observables $(\Phi^{(n)})_{n\geq 1}$ such that
 - **1** $\Phi^{(n)}$'s determine ρ_n 's
 - 2 $\Phi^{(n)}$'s satisfy closed equations
- **Realization**: for n = 1, 2, ... define

$$\Phi_t^{(2n)}(x_1,\ldots,x_{2n}) := \operatorname{Prob}(N_t(x_{2i-1},x_{2i}) = 0, i = 1,\ldots,n)$$

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

Exact solvability (coalescing case)

- Idea: find a set of observables $(\Phi^{(n)})_{n\geq 1}$ such that
 - **1** $\Phi^{(n)}$'s determine ρ_n 's
 - 2 $\Phi^{(n)}$'s satisfy closed equations
- **Realization**: for n = 1, 2, ... define

$$\Phi_t^{(2n)}(x_1,\ldots,x_{2n}) := \operatorname{Prob}(N_t(x_{2i-1},x_{2i}) = 0, i = 1,\ldots,n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Observe:

$$(\partial_t - \sum_{k=1}^{2n} \partial_k^2) \Phi_t^{(2n)} = 0 \text{ for } x_1 < \ldots < x_{2n}$$

Exact solvability (coalescing case)

- Idea: find a set of observables $(\Phi^{(n)})_{n\geq 1}$ such that
 - **1** $\Phi^{(n)}$'s determine ρ_n 's
 - 2 $\Phi^{(n)}$'s satisfy closed equations
- **Realization**: for n = 1, 2, ... define

$$\Phi_t^{(2n)}(x_1,\ldots,x_{2n}) := \operatorname{Prob}(N_t(x_{2i-1},x_{2i}) = 0, i = 1,\ldots,n)$$

Observe:

$$\left(\partial_t - \sum_{k=1}^{2n} \partial_k^2 \right) \Phi_t^{(2n)} = 0 \text{ for } x_1 < \ldots < x_{2n}$$

$$\left(\Phi_t^{(2n)}(\ldots, x_k = x_{k+1}, \ldots) = \Phi_t^{(2n-2)}(\ldots, x_{k-1}, x_{k+2}, \ldots) \right)$$

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

Exact solvability (coalescing case)

- Idea: find a set of observables $(\Phi^{(n)})_{n\geq 1}$ such that
 - **1** $\Phi^{(n)}$'s determine ρ_n 's
 - 2 $\Phi^{(n)}$'s satisfy closed equations
- **Realization**: for n = 1, 2, ... define

$$\Phi_t^{(2n)}(x_1,\ldots,x_{2n}) := \operatorname{Prob}(N_t(x_{2i-1},x_{2i}) = 0, i = 1,\ldots,n)$$

(日)

• Observe: • $\left(\partial_t - \sum_{k=1}^{2n} \partial_k^2\right) \Phi_t^{(2n)} = 0 \text{ for } x_1 < \ldots < x_{2n}$ • $\Phi_t^{(2n)}(\ldots, x_k = x_{k+1}, \ldots) = \Phi_t^{(2n-2)}(\ldots, x_{k-1}, x_{k+2}, \ldots)$ • $\rho_t^{(n)}(x_1, x_3, \ldots, x^{2n-1}) = \left(\prod_{k=1}^n (-\partial_{2k}) \Phi_t^{(2n)}\right)|_{(x_{2m}=x_{2m-1}, m=1, 2, \ldots, n)}$

• Claim:
$$\Phi_t^{(2n)}(x_1, \dots, x_{2n}) = \mathsf{Pf}_{1 \le i < j \le 2n} \left(\Phi_t^{(2)}(x_i, x_j) \right)$$

・ロト・(四)・(日)・(日)・(日)・(の)

• Claim:
$$\Phi_t^{(2n)}(x_1, \dots, x_{2n}) = \mathsf{Pf}_{1 \le i < j \le 2n} \left(\Phi_t^{(2)}(x_i, x_j) \right)$$

• **Recall:** if $M = -M^T$ - an antisymmetric $2n \times 2n$ matrix, then the Pfaffian of M is $Pf(M) = \pm \sqrt{\det(M)}$

• Claim:
$$\Phi_t^{(2n)}(x_1, \dots, x_{2n}) = \mathsf{Pf}_{1 \le i < j \le 2n} \left(\Phi_t^{(2)}(x_i, x_j) \right)$$

- **Recall:** if $M = -M^T$ an antisymmetric $2n \times 2n$ matrix, then the Pfaffian of M is $Pf(M) = \pm \sqrt{\det(M)}$
- Compare this with correlation functions for free fermions
- Correlation functions can be obtained by differentiation:

•
$$\rho_t^{(n)}(x_1,...,x_n) = \mathsf{Pf}_{1 \le i, \le n}(K_t(x_i,x_j))$$

• Claim:
$$\Phi_t^{(2n)}(x_1, \dots, x_{2n}) = \mathsf{Pf}_{1 \le i < j \le 2n} \left(\Phi_t^{(2)}(x_i, x_j) \right)$$

- **Recall:** if $M = -M^T$ an antisymmetric $2n \times 2n$ matrix, then the Pfaffian of M is $Pf(M) = \pm \sqrt{\det(M)}$
- Compare this with correlation functions for free fermions
- Correlation functions can be obtained by differentiation:

•
$$\rho_t^{(n)}(x_1, \ldots, x_n) = \mathsf{Pf}_{1 \le i, \le n}(K_t(x_i, x_j))$$

• K_t is a 2-by-2 matrix kernel of the form

$$\mathcal{K}_t(x,y) = \begin{pmatrix} \Phi_t^{(2)}(x,y) & \partial_2 \Phi_t^{(2)}(x,y) \\ \partial_1 \Phi_t^{(2)}(x,y) & \partial_1 \partial_2 \Phi_t^{(2)}(x,y) \end{pmatrix} \quad \text{for } x < y$$

• Claim:
$$\Phi_t^{(2n)}(x_1, \dots, x_{2n}) = \mathsf{Pf}_{1 \le i < j \le 2n} \left(\Phi_t^{(2)}(x_i, x_j) \right)$$

- **Recall:** if $M = -M^T$ an antisymmetric $2n \times 2n$ matrix, then the Pfaffian of M is $Pf(M) = \pm \sqrt{\det(M)}$
- Compare this with correlation functions for free fermions
- Correlation functions can be obtained by differentiation:

•
$$\rho_t^{(n)}(x_1, \ldots, x_n) = Pf_{1 \le i, \le n}(K_t(x_i, x_j))$$

• K_t is a 2-by-2 matrix kernel of the form

$$\mathcal{K}_t(x,y) = \begin{pmatrix} \Phi_t^{(2)}(x,y) & \partial_2 \Phi_t^{(2)}(x,y) \\ \partial_1 \Phi_t^{(2)}(x,y) & \partial_1 \partial_2 \Phi_t^{(2)}(x,y) \end{pmatrix} \quad \text{for } x < y$$

• Distributions of particles of this type are called *Pfaffian point* processes

• $N_t(a, b) =$ number of particles in (a, b) at time t.

- $N_t(a, b) =$ number of particles in (a, b) at time t.
- For $0 \le \theta \le 1$ define

$$\Phi_t^{(2n)}(x_1,\ldots,x_{2n}) = \mathbb{E}\left(\prod_{j=1}^n (-\theta)^{N_t(y_{2j-1},y_{2j})}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- $N_t(a, b) =$ number of particles in (a, b) at time t.
- For $0 \le \theta \le 1$ define

$$\Phi_t^{(2n)}(x_1,\ldots,x_{2n}) = \mathbb{E}\left(\prod_{j=1}^n (-\theta)^{N_t(y_{2j-1},y_{2j})}\right)$$

• $\theta = 1$: 'spins' for ABM's; $\theta = 0$: empty interval indicators for CBM's

・ロト・(型ト・(ヨト・(ヨト)) ヨー うへつ

- $N_t(a, b) =$ number of particles in (a, b) at time t.
- For $0 \le \theta \le 1$ define

$$\Phi_t^{(2n)}(x_1,\ldots,x_{2n}) = \mathbb{E}\left(\prod_{j=1}^n (-\theta)^{N_t(y_{2j-1},y_{2j})}\right)$$

• $\theta=1:$ 'spins' for ABM's; $\theta=0:$ empty interval indicators for CBM's

・ロト・(型ト・(ヨト・(ヨト)) ヨー うへつ

• $\Phi_t^{(2n)}$ solves linear PDE with BC's in terms of $\Phi_t^{(2n-2)}$

- $N_t(a, b) =$ number of particles in (a, b) at time t.
- For $0 \le \theta \le 1$ define

$$\Phi_t^{(2n)}(x_1,\ldots,x_{2n}) = \mathbb{E}\left(\prod_{j=1}^n (-\theta)^{N_t(y_{2j-1},y_{2j})}\right)$$

- $\theta = 1$: 'spins' for ABM's; $\theta = 0$: empty interval indicators for CBM's
- $\Phi_t^{(2n)}$ solves linear PDE with BC's in terms of $\Phi_t^{(2n-2)}$
- The solution is a Pfaffian for any deterministic or random Poisson initial conditions

・ロト・(型ト・(ヨト・(ヨト)) ヨー うへつ

- $N_t(a, b) =$ number of particles in (a, b) at time t.
- For $0 \le \theta \le 1$ define

$$\Phi_t^{(2n)}(x_1,\ldots,x_{2n}) = \mathbb{E}\left(\prod_{j=1}^n (-\theta)^{N_t(y_{2j-1},y_{2j})}\right)$$

- $\theta = 1$: 'spins' for ABM's; $\theta = 0$: empty interval indicators for CBM's
- $\Phi_t^{(2n)}$ solves linear PDE with BC's in terms of $\Phi_t^{(2n-2)}$
- The solution is a Pfaffian for any deterministic or random Poisson initial conditions
- Compare $\Phi_t^{(2n)}$ with similar observables for ASEP (Borodin, Corwin, Sasamoto)

• Initial condition: particles start from every point of \mathbb{R} at t = 0

- Initial condition: particles start from every point of \mathbb{R} at t = 0
 - $\Phi_t^{(2)}(y,z) = \frac{2}{1+\theta} \operatorname{erfc}\left(\frac{y-z}{\sqrt{t}}\right)$
 - For $\theta = 1$, this is the bulk scaling limit of the law of real eigenvalues in the real Ginibre ensemble (Borodin-Sinclair, Forrester-Nagao)

- Initial condition: particles start from every point of \mathbb{R} at t = 0
 - $\Phi_t^{(2)}(y,z) = \frac{2}{1+\theta} \operatorname{erfc}\left(\frac{y-z}{\sqrt{t}}\right)$
 - For $\theta = 1$, this is the bulk scaling limit of the law of real eigenvalues in the real Ginibre ensemble (Borodin-Sinclair, Forrester-Nagao)
 - $\rho_t^{(n)}(x_1, \dots, x_K) \stackrel{t\uparrow\infty}{\sim} c_n t^{-\frac{n}{2} \frac{n(n-1)}{4}} \prod_{i < j} |x_i x_j|$ nonlinear scaling

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

- Initial condition: particles start from every point of \mathbb{R} at t = 0
 - $\Phi_t^{(2)}(y,z) = \frac{2}{1+\theta} \operatorname{erfc}\left(\frac{y-z}{\sqrt{t}}\right)$
 - For $\theta = 1$, this is the bulk scaling limit of the law of real eigenvalues in the real Ginibre ensemble (Borodin-Sinclair, Forrester-Nagao)
 - $\rho_t^{(n)}(x_1, \dots, x_K) \stackrel{t\uparrow\infty}{\sim} c_n t^{-\frac{n}{2} \frac{n(n-1)}{4}} \prod_{i < j} |x_i x_j|$ nonlinear scaling

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

• Initial condition: particles start from every point of \mathbb{R}_- at t = 0

- Initial condition: particles start from every point of \mathbb{R} at t = 0
 - $\Phi_t^{(2)}(y,z) = \frac{2}{1+\theta} \operatorname{erfc}\left(\frac{y-z}{\sqrt{t}}\right)$
 - For $\theta = 1$, this is the bulk scaling limit of the law of real eigenvalues in the real Ginibre ensemble (Borodin-Sinclair, Forrester-Nagao)
 - $\rho_t^{(n)}(x_1, \dots, x_K) \stackrel{t\uparrow\infty}{\sim} c_n t^{-\frac{n}{2} \frac{n(n-1)}{4}} \prod_{i < j} |x_i x_j|$ nonlinear scaling

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

• Initial condition: particles start from every point of \mathbb{R}_- at t = 0

•
$$\Phi_t^{(2)}(y,z) = \frac{2}{2+\theta} F\left(\frac{y}{2\sqrt{t}}, \frac{z}{2\sqrt{t}}\right)$$

• $K(y,z) = 1 + \int_y^z \int_{-\infty}^y \frac{u-v}{\sqrt{2\pi}} e^{-\frac{(u-v)^2}{2}} \operatorname{erfc}\left(\frac{u+v}{\sqrt{2}}\right) dudv$

- Initial condition: particles start from every point of \mathbb{R} at t = 0
 - $\Phi_t^{(2)}(y,z) = \frac{2}{1+\theta} \operatorname{erfc}\left(\frac{y-z}{\sqrt{t}}\right)$
 - For $\theta = 1$, this is the bulk scaling limit of the law of real eigenvalues in the real Ginibre ensemble (Borodin-Sinclair, Forrester-Nagao)
 - $\rho_t^{(n)}(x_1, \dots, x_K) \stackrel{t\uparrow\infty}{\sim} c_n t^{-\frac{n}{2} \frac{n(n-1)}{4}} \prod_{i < j} |x_i x_j|$ nonlinear scaling
- Initial condition: particles start from every point of \mathbb{R}_- at t = 0

•
$$\Phi_t^{(2)}(y,z) = \frac{2}{2+\theta} F\left(\frac{y}{2\sqrt{t}},\frac{z}{2\sqrt{t}}\right)$$

- $K(y,z) = 1 + \int_y^z \int_{-\infty}^y \frac{u-v}{\sqrt{2\pi}} e^{-\frac{(u-v)^2}{2}} \operatorname{erfc}\left(\frac{u+v}{\sqrt{2}}\right) dudv$
- For $\theta = 0$, this is the edge scaling limit of the law of real eigenvalues in the real Ginibre ensemble (Borodin-Sinclair)

Non-coalescing Brownian disks in 2d

Typical non-collision event

• What is the probability $p_{NC}^{(n)}(\mathbf{x}, t)$ that *n* non-interacting Brownian disks of radius 1 with initial positions x_1, x_2, \ldots, x_n do not overlap before time *t*, where $t \to \infty$?

イロト イボト イヨト イヨト 二日

Non-coalescing Brownian disks in 2d

Typical non-collision event

 What is the probability *p*⁽ⁿ⁾_{NC}(**x**, t) that *n* non-interacting Brownian disks of radius 1 with initial positions *x*₁, *x*₂,..., *x_n* do not overlap before time *t*, where t → ∞?
 ∂_x p⁽ⁿ⁾_x(**x**, t) -

イロト イボト イヨト イヨト 二日

$$-\binom{n}{2}\frac{1}{t\log(t)}p_{NC}^{(n)}(\mathbf{x},t) =$$

Non-coalescing Brownian disks in 2d

Typical non-collision event

What is the probability p⁽ⁿ⁾_{NC}(**x**, t) that n non-interacting Brownian disks of radius 1 with initial positions x₁, x₂,..., x_n do not overlap before time t, where t → ∞?
∂_t p⁽ⁿ⁾_{NC}(**x**, t) =

・ロト ・ 回 ト ・ ヨト ・ ヨト … ヨ

$$-\binom{n}{2}\frac{1}{t\log(t)}p_{NC}^{(n)}(\mathbf{x},t)$$

• Conclusion: $p_{NC}^{(n)}(\mathbf{x},t) = c^{(n)}(\mathbf{x})\log(t)^{-n(n-1)/2}$ as $t \to \infty$

• $\rho_t^{(1)} \sim \log(t)/t$ (Bramson-Lebowitz - a rigorous version of Smoluchowski theory)

- $\rho_t^{(1)} \sim \log(t)/t$ (Bramson-Lebowitz a rigorous version of Smoluchowski theory)
- Bootstrapping to this:
 - If there are *n* particles at time *t* at positions $x_1, x_2, ..., x_n$, there must exist *n* particles at time t - s(t) at well separated positions, which do not meet before *t*

(日)

- $\rho_t^{(1)} \sim \log(t)/t$ (Bramson-Lebowitz a rigorous version of Smoluchowski theory)
- Bootstrapping to this:
 - If there are *n* particles at time *t* at positions x_1, x_2, \ldots, x_n , there must exist *n* particles at time t s(t) at well separated positions, which do not meet before *t*

(日)

 $\hbox{ or } s(t) \sim t/\log(t)^{\alpha} \text{, } s(t) \rightarrow \infty \text{ as } t \rightarrow \infty \text{; } s(t) << t$

- $\rho_t^{(1)} \sim \log(t)/t$ (Bramson-Lebowitz a rigorous version of Smoluchowski theory)
- Bootstrapping to this:
 - If there are *n* particles at time *t* at positions x_1, x_2, \ldots, x_n , there must exist *n* particles at time t s(t) at well separated positions, which do not meet before *t*

(日)

$$\begin{array}{l} \textbf{2} \quad \textbf{s}(t) \sim t/\log(t)^{\alpha}, \ \textbf{s}(t) \rightarrow \infty \ \text{as} \ t \rightarrow \infty; \ \textbf{s}(t) << t \\ \textbf{3} \quad \rho_{t-s(t)}^{(n)} \sim \rho_{t-s(t)}^{(1) \ n} \end{array}$$

- $\rho_t^{(1)} \sim \log(t)/t$ (Bramson-Lebowitz a rigorous version of Smoluchowski theory)
- Bootstrapping to this:
 - If there are *n* particles at time *t* at positions x_1, x_2, \ldots, x_n , there must exist *n* particles at time t s(t) at well separated positions, which do not meet before *t*

(日)

2
$$s(t) \sim t/\log(t)^{\alpha}$$
, $s(t) \to \infty$ as $t \to \infty$; $s(t) << t$
3 $\rho_{t=s(t)}^{(n)} \sim \rho_{t=s(t)}^{(1)n}$

$$p_t^{(n)} \sim p_{NC}^{(n)}(s(t)) \rho_{t-s(t)}^{(n)}$$

- $\rho_t^{(1)} \sim \log(t)/t$ (Bramson-Lebowitz a rigorous version of Smoluchowski theory)
- Bootstrapping to this:
 - If there are *n* particles at time *t* at positions x_1, x_2, \ldots, x_n , there must exist *n* particles at time t s(t) at well separated positions, which do not meet before *t*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへの

$$\begin{array}{l} \textcircled{2} \quad s(t) \sim t/\log(t)^{\alpha}, \ s(t) \to \infty \ \text{as} \ t \to \infty; \ s(t) << t \\ \textcircled{2} \quad \rho_{t-s(t)}^{(n)} \sim \rho_{t-s(t)}^{(1) \ n} \\ \textcircled{2} \quad \rho_{t}^{(n)} \sim \rho_{NC}^{(n)}(s(t))\rho_{t-s(t)}^{(n)} \\ \textcircled{2} \quad \rho_{t}^{(n)} \sim \rho_{NC}^{(n)}(s(t))\rho_{t}^{(1) \ n} \sim \log(t)^{n-n(n-1)/2}/t^{n} \end{array}$$

• CABM_{θ} for $0 \leq \theta \leq 1$ is exactly solvable in one dimension

• $\mathsf{CABM}_{ heta}$ for $0 \leq heta \leq 1$ is exactly solvable in one dimension

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

• Is there a reason? (Hecke algebras.)

- CABM $_{\theta}$ for $0 \leq \theta \leq 1$ is exactly solvable in one dimension
- Is there a reason? (Hecke algebras.)
- Is there a deep reason for the coincidence of the laws of ABM's and the scaling limits of the law of Ginibre real eigenvalues both in the bulk and at the edge?

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

- $CABM_{\theta}$ for $0 \le \theta \le 1$ is exactly solvable in one dimension
- Is there a reason? (Hecke algebras.)
- Is there a deep reason for the coincidence of the laws of ABM's and the scaling limits of the law of Ginibre real eigenvalues both in the bulk and at the edge?
- Coalescing/annihilating Brownian disks in two dimensions can be studied using a probabilistic argument, which generalizes and rigorizes the original Smoluchowski theory.

(日)

- $CABM_{\theta}$ for $0 \le \theta \le 1$ is exactly solvable in one dimension
- Is there a reason? (Hecke algebras.)
- Is there a deep reason for the coincidence of the laws of ABM's and the scaling limits of the law of Ginibre real eigenvalues both in the bulk and at the edge?
- Coalescing/annihilating Brownian disks in two dimensions can be studied using a probabilistic argument, which generalizes and rigorizes the original Smoluchowski theory.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

• Asymptotically exact non-linear scaling can be established both for *d* = 1 and *d* = 2.

References

- Multi-Scaling of the n-Point Density Function for Coalescing Brownian Motions, CMP Vol. 268, No. 3, (2006)
- Pfaffian formulae for one dimensional coalescing and annihilating systems, EJP, vol. 16, Article 76 (2011)
- Interacting particle systems on Z as Pfaffian point processes I - annihilating and coalescing random walks, arXiv:1507.01843
- Interacting particle systems on Z as Pfaffian point processes II - coalescing branching random walks and annihilating random walks with immigration, arXiv:1605.09668
- Multi-point correlations for two dimensional coalescing random walks, arXiv:1707.06250