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OUTLINE

* Motivation
* BUU transport

e Results: charmonium mass shift in pbar-Au collisions at
6 GeV



* Boltzman-Uehling-Uhlenbeck (BUU) transport to simulate the non-
equilibrium dynamics of heavy ion collisions

* The degrees of freedom : hadrons (mesons, baryons + resonances)

* Hadrons with heavier quarks are also important e.g. charmonium,
bottomonium,...

* In medium effects -> self energy plays an important role.

* The mass of the charmonium states can change significantly due to
nuclear effects -> it may be possible to examine the mass shifts from
the dilepton spectra -> information about the gluon condensate ->
QCD vacuum



Charmonium in matter

e cC is a dipole in color electric field -> mass shift due to second order
Stark-effect (NRQCD Phys.Rev. D79 (2009) 011501)
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* DD loops also contribute to the self energy + D meson gets a mass
shift due to the Stark effect.

* Width changes due to collisional broadening.



Phys.Rev. D79 (2009) 011501

o
o
-
=

0.002 |———————- /
[} ) L L | L
0.002 | N
= | (olm)B? ---

_ﬂ.{]ﬂd | i I - S S —
0.8 0.9 1 1.1 1.2

E and B Condensates [Ge‘u‘q]




Kinetic theory

e Starting point -> Boltzmann-Uhling-Uhlenbeck equation
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* Momentum dependent mean-fieldpotential:

n n 2 ( d3p’ x,p'
U(x,p)=A—+B<—> LC f p3 fn(x,p") :
Ny Ny ngJ (2m) 1 (p — p’)

TR

G. Welke, M. Prakash, T.T.5. Kuo and 5. Das Gupta: Phys. Rev. C38
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» Test-particle method: F = Y6 (x — x;(£))6®(p — p; (1))
 Collision term couples the equations

e Off-shell transport is more complicated (propagate the spectral functions ->
energy conservation?)



* Problems when the particle spectral function is not d-like
* Width change} They are changing their shapes during evolution.

e Mass shift

* This is ok if the particles have very long lifetime and weakly interact
with the sorroundings.

* Inadequate for short-lived (broad resonance states) of high collision
rate (->collisional broadening)

e Simple on-shell -> not regaining the vacuum mass !!

e We have to put the self energy information (especially the imaginary
part ~ spectral function) into the equations of motion!



Equations of motion
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* Form of the self-energy (Ansatz):
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* Assumption: the self energy varies “slowly”.

* The mass shift is proportional to the density of the surrounding
matter |

* From the mass shift equation -> the vacuum mass is recovered at the
end of the collision !

* Energy conserving method (apart from numerical artifacts).



Evoulution of A,(m,t) and 4, (m, t)
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Collision term

e 24 baryon resonances + A and X baryons
*mI,N,0,p0,wK
* Now also : J/W¥, W(3686),¥(3770)

 Collision term:

e NN & NR

e NN & AA

e R - Nm,Nn,No, Np, Nw, A, N(1440), KA, KX
* New cross sections:

« pp - J/¥Y 1, ¥(3686)r’, Y(3770)r°

et p ->nJ/¥Y ,n¥Y(3686) ,n¥(3770)

« pp - D°DO, DD~

* pp > pp/ /Y +X

e J/W absorptionon N



Charm cross sections
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Simulation method

* Initalize particles (on-shell / off-shell)

* Propagate particles in matter (self energy changes if the density
changes -> spectral function will change) according to EOM.

* Hadronic collisions:
* Geometric picture
* Broadening (self energy changes -> spectral function changes)
 Particle production (e.g. JPSI)
 Particle annihilation

 Pauli blocking (phase space occupation examination)



Charmonium mass shift

* From the dilepton spectrum we will be able to see the mass shift of
some of the charmonium states (in theory at least)

* Background:
* Drell-Yan

* Open-charm e.g. weak decay of D meson pairs (¢ = s + e + v,) so from two
D mesons we get a dilepton pair (D = Kev,)

* For now it seems like up to few GeV the background is low.

* We examined pAu collisions at 6 GeV

* The calculated mass shifts (|npUt) Charmonium | Stark-effect+ DD loop
J/ W -8+3 MeV p/po
U (3686) -100-30 MeVp/po
W (3770) -140+15 MeV p/pq




Where do they created?

0

surface

-10

Most of the antiprotons annihilate at the surface of the target -> the charmonium is also
created here -> it can probe the matter during its evolution with its decay to dileptons.
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Time evoulution of masses and density
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* The charmonium regains its vacuum values at the end of the collision.

* There is a sharp transition from the dense matter to vacuum ~[14-
18]fm/c -> we have to see two peaks at the end.



* The transition region is thin -> most of the dileptons come from the
dense matter or from the vacuum -> we should see some separation

in the spectrum.
* Time evolution of the mass
spectra (W(3770)).
* The integrated spectrum shows
the two peak structure.
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* Dilepton invariant mass spectrum
from BUU.
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2. From the mass shift we can obtain

the gluon condensate at p =
0.9p,



summary

* We use Non-equilibrium off-shell transport to simulate heavy ion
collisions.

* We developed a “semi-statistical” method based on the Bootstrap
model to calculate unknown cross sections.

e We examined the mass shift of the charmonium states in nuclear
matter.

* The most probable candidate to measure the mass shift therefore the
gluon condensate is the ¥(3686) state.

* Future:

* Find the “best” energy range to see the two peak structure (or only the
shifted peak at the beginning)

* Develop further the statistical model (elastic scattering, many body collisions)

e Put many body collisions into the simulation (hard task...geometrical picture is
not really good -> effective models/Regge-method/crossing symmetry)



