II International Workshop on Simulations of HIC for NICA Energies JINR (Dubna), April 16-18, 2018

Study of dynamics of heavy-ion collisions at NICA: EoS, directed and elliptic flow, freeze-out and femtoscopy correlations

SINP MSU: G. Eyyubova, I. Lokhtin, L. Malinina (also in JINR),
S. Sivoklokov, A. Snigirev
UiO: L. Bravina, <u>E. Zabrodin</u>

Outlook

Investigation of flow effects and freeze-out dynamics in heavyion (HI) collisions at NICA energies.

Study of femtoscopic observables in HI collisions at NICA energies.

Investigation of the relaxation of quark-hadron matter to the equilibrium state in microscopic models. Extraction of equation of state (EoS) of hot and dense nuclear matter produced in HI collisions at NICA energies.

1. Flow and freeze-out

in collaboration with Yu. Kvasiuk, A. Oshlyanskyi, D. Sachenko and S. Vityuk

DISAPPEARANCE OF DIRECTED FLOW

II International Workshop on Simulations of HIC for NICA Energies, JINR (Dubna), April 16-18, 2018

3

DIR.FLOW OF NUCLEONS AND FRAGMENTS AT LOWER ENERGIES

Figure 1 Average in-plane transverse momentum versus normalized rapidity in the reaction Au+Au at 8004 MeV. The points at $y/y_{beam} < 0$ are reflected.

W. Reisdorf, H.G. Ritter Annu.Rev.Nucl.Part.Sci. 47 (1997) 663

Plastic Ball Collaboration introduced a slope parameter

$$\mathbf{F} = \frac{\mathbf{d} \langle \mathbf{p_x} \rangle / \mathbf{A}}{\mathbf{dy_n}}, \quad \mathbf{y_n} = \mathbf{y} / \mathbf{y_{max}}$$

$$\mathbf{F}_{\mathbf{y}} = \frac{\mathbf{d} \langle \mathbf{p}_{\mathbf{x}} \rangle / \mathbf{A}}{\mathbf{d} \mathbf{y}}$$

Directed flow of nucleons and fragments has linear slope in normal direction => normal flow

SOFTENING OF DIRECTED FLOW

Au+Au cp*> (GeV/c) AGeV Data 0.1 0 -0.1 1 AGeV Hydro 0.5 0 QGF -0.5-1 0 y/y_{cm}

Transition to the Quark-Gluon Plasma \rightarrow decrease in pressure \rightarrow softening of the directed flow

Wiggle structure: The effect is more pronounced in peripheral and light-ion collisions, therefore, it cannot be explained by the softening of the EOS because of the formation of strings

5

b=4 fm b/b =0.3 b=2 fm b/b =0.15 b=6 fm b/b___=0.4 3 b=10 fm b/b_{max}=0.75 b=8 fm b=12 fm b/b___=0.60 0.2 b/b___=0.90 -0.22

H. Liu, S. Panitkin, N. Xu, PRC 59, 348 (1999)

R.J.M. Snellings et al., PRL 84, 2803 (2000) L. Bravina et al., PRC 61, 064902 (2000)

L. Bravina, PLB 334, 49 (1995)

Beam energy scan results for v₁ (STAR)

S. Singha et al. (STAR Collab.), PoS CPOD2017 (2018) 004

Figure 1: (Color online) Rapidity dependence of directed flow (v_1) for Λ , $\overline{\Lambda}$, K^+ , K_s^0 , K^- and ϕ in 10-40% and 40-80% Au+Au collisions at $\sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4$ and 200 GeV.

Directed flow of protons in light and heavy systems

QGSM Blue - $\sqrt{s} = 4$ GeV Green - 7.7 GeV Red - 19 GeV

Softening and development of antiflow at midrapidity with increasing impact parameter In central events – "normal" flow with decreasing CM energy Softening of v₁ at midrapidity is stronger for small colliding systems, whereas in case of QGP formation the effect should be opposite

7

Directed flow in HI collisions at NICA energies

Origin of changing of proton directed flow from antiflow to normal flow with decrease of CM energy in microscopic transport models: Spectator peaks which demonstrate normal flow behavior become closer to each other $\sum_{\substack{0.15\\0.15\\0.16\\0\\0.05\\-0.16\\-0.05\\-0.16\\-$

v1 for protons in S+S collisions, 0-10% centrality, vs = 11.6, 7.7, 3.5 GeV

UrQMD calculations

Directed flow = Normal flow – Antiflow

Time development of directed flow

II International Workshop on Simulations of HIC for NICA Energies, JINR (Dubna), April 16-18, 2018

9

Time evolution of directed flow at NICA energies

 dv_1/dy (y=0)

protons

pions

10

Directed flow at midrapidity is developing until t = 10 fm/c

Time evolution of elliptic flow at NICA energies

Au+Au @ 7.7 GeV; b=6fm

Negative v₂ of pions and protons frozen at first 3 fm/c
 Protons, pions, kaons frozen between 3 and 10 fm/c carry stronger elliptic flow
 v₂ is developing until t = 12 fm/c or later => we need to investigate freeze-out

Sequential freeze-out of hadrons at NICA energies

There is no sharp freeze-out for different hadrons
 The order of freeze-out is as follows: mesons (kaons and pions), nucleons and lambdas

Freeze-out of hadrons at NICA energies

Au+Au @ 7.7 GeV ; b = 0 fm

Baryons are emitted longer and from larger areas than mesons

II International Workshop on Simulations of HIC for NICA Energies, JINR (Dubna), April 16-18, 2018

13

Freeze-out of hadrons at NICA energies

Baryons are emitted longer and from larger areas than mesons

- Directed flow = Normal flow Antiflow
- Softening of directed flow can be misinterpreted as the softening of the EOS due to QGP formation, but: QGP => the effect is stronger for heavy nuclei (Au+Au or Pb+Pb) Cascade => the effect is stronger for light colliding systems
- v₁ development at midrapidity takes about 15 fm/c
- Different species decouple at different times. The order of the hadronic freeze-out is as follows: 1-2 - pions and kaons, 3 – nucleons, 4 - lambdas

2. Correlation femtoscopy

Correlation Femtoscopy

Correlation femtoscopy : measurement of space-time characteristics R, c_{T} ~fm of particle production using particle correlations due to the effects of quantum statistics (QS) and final state interactions (FSI)

• Two particle Correlation Function (CF): • Theory: $C(q) = \frac{N_2(p_1, p_2)}{N_1(p_1) \cdot N_2(p_1)}, C(\infty) = 1$

•Experiment: $C(q) = \frac{S(q)}{B(q)}, q = p_1 - p_2$

S(q) – pairs from same event B(q) – pairs from different event • Parametrization:

R Gaussian radius in Pair Rest Frame (**PRF**), λ

O3D:
$$C(q_{out}, q_{side}, q_{long}) = 1 + \lambda \exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2)$$

•1D: $C(q_{inv}) = 1 + \lambda \exp(-R^2 q_{inv}^2)$,

correlation strength parameter

R

where both **R** and **q** are in Longitudinally Co-Moving Frame (LCMS) long || beam; out || transverse pair velocity v_{τ} ; side normal to out, long

Study of phase transition with femtoscopy

Emission times for 1st order phase transition are larger than for crossover.

Pion emission times at the last interactions

We study the possibilities to extract this difference experimentally at the MPD using femtoscopy technique

"Correlation femtoscopy study at energies available at the JINR Nuclotron-based Ion Collider fAcility and the BNL Relativistic Heavy Ion Collider within a viscous hydrodynamic plus cascade model", Phys.Rev. C96 (2017) no.2, 024911 P. Batyuk, Iu. Karpenko, R. Lednicky, L. Malinina,

K. Mikhaylov, O. Rogachevsky, D. Wielanek)

3D Pion radii versus mT with vHLLE+UrQMD model

Green triangles - 1PT EoS, Red triangles - XPT EoS, Open black squares STAR data BES

R_{out}(XPT) at high energies and R_{out}(1PT) at all energies are slightly overestimated -> an indication of the need to reduce the emission time in the model
 R(1PT) > R(XPT) by ~ 1 fm for "out" and "long" radii

Source functions

The new Source Function technique was tested.

SF for 1st order is wider than the one for crossover.

Main advantage of this technique is the possibility to use the Source Functions itself without any hypothesis about its shape.

$$C(\mathbf{k}^*, \mathbf{P}) = \int \mathrm{d}^3 \mathbf{r}^* S^{\alpha}(\mathbf{r}^*, \mathbf{P}) \overline{\left|\psi_{-\mathbf{k}^*}^{S, \alpha' \alpha}(\mathbf{r}^*)\right|^2},$$

Different functions were tested to describe the shape of SF projections: single Gaussian

$$S(\vec{r^*}) \sim exp\left(-\frac{r^{*2}_{out}}{4R^{*2}_{out}} - \frac{r^{*2}_{side}}{4R^{*2}_{side}} - \frac{r^{*2}_{long}}{4R^{*2}_{long}}\right),$$

$$S^{H}(r_{x}, r_{y}, r_{z}) = \lambda \exp\left[-f_{s}\left(\frac{x^{2}}{4r_{xs}^{2}} + \frac{y^{2}}{4r_{ys}^{2}} + \frac{z^{2}}{4r_{zs}^{2}}\right) - f_{l}\left(\frac{x^{2}}{4r_{xl}^{2}} + \frac{y^{2}}{4r_{yl}^{2}} + \frac{z^{2}}{4r_{zl}^{2}}\right)\right],$$

$$Hump-f_{s} = 1/[1 + (r/r_{0})^{2}], \quad f_{l} = 1 - f_{s}.$$

Summary of pion femtoscopy studies for NICA

Possibility to distinguish between hybrid model source functions with 1 order phase transition and crossover was studied using vHLLE+UrQMD model

st

•Hydro phase lasts longer with 1st order PT.

Hadronic cascade diminishes the difference between 1PT and XPT source functions, though there is still a possibility to distinguish them using the femtoscopy technique.
 VHLLE+UrQMD model with XPT describes RHIC femtoscopy radii at sqrt(s) = 7.7-62.4 GeV
 There is an indication that optimal description of the femtoscopic radii requires about 1 fm shorter pion emission time with the present setup of the model, at all collision energies. – new tune of vHLLE+UrQMD model is needed.

It'll be very interesting to try to use 3 phase hydro model (THESEUS) at low energies

 $R_{out}(1PT) > R_{out}(XPT) \& R_{long}(1PT) > R_{long}(XPT)$

Source functions technique allows to get an additional information about differences between 1PT / XPT; Best parametrizations of SF : Gauss+Gauss and Hump

The standard one-Gaussian parametrization of the 3D CF reflects correctly the behaviour of the SF at small r* and is sufficiently sensitive to EoS.
It is very promising to make 3D CF analysis using heavier particles: K,p because of more Gaussian shape of SF and less influence of resonances

3. Relaxation to equilibrium and Equation of State (EOS)

EQUILIBRATION IN THE CENTRAL CELL

 $t^{cross} = 2R/(\gamma_{cm} \beta_{cm})$

 $t^{eq} \geq t^{cross} + \Delta z / (2\beta_{cm})$

Kinetic equilibrium:

Isotropy of velocity distributions Isotropy of pressure

Thermal equilibrium: Energy

spectra of particles are described by Boltzmann distribution

$$\frac{dN_i}{4\pi pEdE} = \frac{Vg_i}{(2\pi\hbar)^3} \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

Chemical equlibrium:

Particle yields are reproduced by SM with the same values of

$$(T, \ \mu_B, \ \mu_S)$$
:

$$N_i = \frac{Vg_i}{2\pi^2\hbar^3} \int_0^\infty p^2 dp \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

STATISTICAL MODEL OF IDEAL HADRON GAS

PRE-EQUILIBRIUM STAGE

Homogeneity of baryon matter

Absence of flow

The local equilibrium in the central zone is quite possible

KINETIC EQUILIBRIUM

Isotropy of velocity distributions

Isotropy of pressure

Velocity distributions and pressure become isotropic for all energies

THERMAL AND CHEMICAL EQUILIBRIUM

Boltzmann fit to the energy spectra

Particle yields

Thermal and chemical equilibrium seems to be reached

EQUATION OF STATE IN THE CELL

pressure vs. energy

sound velocity

EOS IN THE CELL: OBSERVATION OF KNEE

temperature vs. chemical potentials

Although the "knee" is similar to that in 2-flavor lattice QCD, it is related to inelastic (chemical) freeze-out in the system

SHEAR VISCOSITY AND ENTROPY

in collaboration with M. Teslyk

SHEAR VISCOSITY AND ENTROPY

in collaboration with M. Teslyk

Conclusions (EOS)

- Both models favor formation of equilibrated matter for a period of 10-15 fm/c
- During this period the expansion of matter in the central cell proceeds isentropically with constant S/B
- The EOS has a simple form: P/e = const, where the speed of sound squared varies from 0.12 (AGS) to 0.14 (40 AGeV), and to 0.15 (SPS & RHIC) => onset of saturatio
- T vs. mu: the knee structure which appears at the onset of equilibrium is related to chemical freeze-out

Backup slides

L.V. Malinina

TIME EVOLUTION OF ELLIPTIC FLOW (RHIC)

(1) The earlier the freeze-out of pions, the stronger their elliptic flow (2) The later the freeze-out of nucleons, the stronger their elliptic flow (3) The flow formation is not over e.g. at t = 6 fm/c due to continuous freeze-out of particles It can be promising to make 3D CF analysis using heavier particles: K,p because of more Gaussian shape of SF and less influence of resonances

•Different particle pairs: πK , K+K-, πp , $\pi \Lambda$, $\Lambda \Lambda$.. can be studied -- different influence of cascade phase, emission asymetries..

Az-sensitive femtoscopy is particularly sensitive to the evolution time (in addition to R) and to the expansion velocity.

Some results of PID study by MSU group (2017)

The parameters of dE/dx in TPC BB Aleph parameterization for pi, K, p, e were found and stored in the MPD ROOT class.

The parameters of TOF 1/beta parameterization for pi, K, p, e were found and stored in the MPD ROOT class.

The alternative method of PID : n-sigma method was implemented in MPD ROOT

Purity and contaminations were estimated for Bayesian method for TPC, TOF, TPC+TOF

The first Collaboration meeting of the MPD and BM@N experiments at the NICA Facility, Dubna, April,

Purity / contamination, TPC

The first Collaboration meeting of the MPD and BM@N experiments at the NICA Facility, Dubna, April,

Purity / contamination, TOF

1010 1

Purity / contamination, TPC +TOF

1010 10

Bayesian method:

Probability for the particle to be of a type *i*:

$$P(i) = \frac{1}{\sqrt{2\pi\sigma_{dE/dx}}} \exp\left(-\frac{(dE/dx)_{meas} - (dE/dx)_{BB,i})^2}{2\sigma_{dE/dx}^2}\right)$$

 $w(i) = \frac{C(i)P(i)}{\sum_k P(k)w(k)}, \ C(i) = a' \text{priori probabilities}.$

For now: C(i) = 1.

n-sigma method: True/false decision for the particle to be of a type *i*: $|(dE/dx) - (dE/dx)| < n^* \sigma \rightarrow w(i) = 1$ $|(dE/dx)^{meas} - (dE/dx)^{BB,i}| > n^* \sigma^{dE/dx,i} \rightarrow w(i) = 0$ meas BB,i dE/dx,i

* the n-sigma method because it is more robust and easy to control.

The same for TOF detector: dE/dx (in TPC) $\rightarrow 1/\beta$ (in TOF)

MpdParticleIdentification::SetNSigmaDedx(n) method is added to the class MpdParticleIdentification::SetNSigmaBeta(n) method is added to the class

Purity / contamination, TPC

MPD Plenary meeting Apr. 2017