Collective Flow in Nucleus-Nucleus Collisions at NICA and FAIR Energies

Arkadiy Taranenko

National Research Nuclear University MEPhI

Many thanks to the Organizers!

1

II International Workshop on Simulations of HIC for NICA energies, JINR, Dubna, 16 - 18 April, 2018

OUTLINE

1)Introduction: V_n measurements and QGP **2)**RHIC BES: Directed flow (V_1) and EOS 3) RHIC BES: Elliptic (V_2) and Triangular (V_3) 4) Flow results at SPS, AGS and SIS18. 5) Prospects for measurements in 2018-2019 6) Performance study for NICA experiments

Anisotropic Flow at RHIC/LHC - methods

Initial eccentricity (and its attendant fluctuations) ϵ_n drive momentum anisotropy v_n with specific viscous modulation

Different methods, non-flow, fluctuations

Anisotropic Flow at RHIC/LHC – Data vs Models

Gale, Jeon, et al., Phys. Rev. Lett. 110, 012302

Scaling properties of flow and correlations

A. Bonasera, L.P. Csernai, Phys.Rev.Lett. 59 (1987) 630-633 **The general features of the collective flow could, in principle, be expressed in terms of scale invariant quantities.** ... the particular differences arising from the different initial conditions, masses, energies, etc., can be separated from the general fluid-dynamical features.

W. Reisdorf, H.G. Ritter Ann.Rev.Nucl.Part.Sci. 47 (1997) 663-709 : There is interest in using observables that are both coalescence and scale-invariant. They

allow comparison with theories that are limited to making predictions for single-particle observables. Under certain conditions the evolution in nonviscous hydrodynamics does not depend on the size of the system nor on the incident energy, if distances are rescaled in terms of a typical size parameter, such as the nuclear radius. Momenta and energies are rescaled in terms of the beam velocities, momenta or energies. 5

Anisotropic Flow at RHIC/LHC – scaling relations

Quantitative study of the QCD phase diagram

Validation of the crossover transition leading to the sQGP → Necessary requirement for CEP Strategy for RHIC BES1:

- Map turn-off of QGP signatures
- Location of the Critical End Point (CEP)?
- Location of phase coexistence regions?
- 1st order phase transition signs
- Detailed properties of each phase?

$$\frac{\eta}{s}(T,\mu), \frac{\zeta}{s}(T,\mu), c_s(T), \hat{q}(T), \alpha_s(T), \text{etc}$$

Beam Energy Dependence of Directed Flow (v_1)

Beam Energy Dependence of Directed Flow (v_1)

Minimum in slope of directed flow (dv_1/dy) as a function of beam energy for baryons may suggest sudden softening of EOS - sign of the 1st order phase transition

Proton v_1 probes interplay of baryon transport and hydro behavior

9

None of the models explains the data • Systematics associated with the models is quite large

Centrality Dependence of Directed Flow (v_1)

Prospects for directed flow measurements: NA61/SHINE

Phys Rev C 68, 034903 (2003) (NA49 Coll)

Addendum to the NA61/SHINE program http://cds.cern.ch/record/2059811

Prospects for directed flow measurements: NA61/SHINE

INR RAS + MEPhI

- Results will be important for flow measurements at BM@N, MPD (NICA) and CBM(FAIR)
- Different colliding systems study the effect of spectator matter

The STAR Upgrades and the FXT program

iTPC Upgrade:

- Improves tracking and acceptance
- Ready in 2019

Star Note 0644 : Technical Design Report for the iTPC Upgrade

EndCap TOF Upgrade:

- Improves PID and acceptance
- Ready in 2019

https://arxiv.org/pdf/1609.05102.pdf

EPD Upgrade:

- Improves event plane resolution and centrality definition
- Ready in 2018

Star Note 0666 : An Event Plane Detector for STAR

Prospects for directed flow measurements: STAR BES2

FXT in BES-II: Run 19

Beam Energy (GeV/nucleon)	$\sqrt{\frac{s_{NN}}{(\text{GeV})}}$	Run Time	Species	Number Events
5.75	3.5	2 days	Au+Au	100M MB
7.3	3.9	2 days	Au+Au	100M MB
9.8	4.5	2 days	Au+Au	100M MB
13.5	5.2	2 days	Au+Au	100M MB
19.5	6.2	2 days	Au+Au	100M MB
31.2	7.7	2 days	Au+Au	100M MB

- iTPC and eTOF upgrades will be available
- Would need 100 Million Events at each energy to make the sensitivity of BES-II, 2 days per energy (3.5 GeV 7.7 GeV)
- Data rate is DAQ limited
- Data at 7.7 GeV would provide an overlap energy with the collider mode

Beam Energy Dependence of Elliptic Flow (v_2)

STAR: Phys. Rev. C 86 (2012) 54908

Surprisingly consistent as the energy changes by a factor ~400 Initial energy density changes by nearly a factor of 10 No evidence from v2 of charged hadrons for a turn off of the QGP *How sensitive is* v_2 *to QGP*?

Substantial particleantiparticle split at lower energies

•The number of quark scaling in elliptic flow is broken at low energies

•Do φ-mesons or multi-strange particles deviate?

Beam Energy Dependence of Triangle Flow (v_3)

Models show that higher harmonic coefficients are more sensitive to the existence of a QGP phase. In models, v_3 goes away when the QGP phase disappears *J. Auvinen, H. Petersen, Phys. Rev. C* 88, 64908, *B. Schenke et.al., Phys. Rev. C* 85, 024901 **STAR results show** that v_3 vanishes for peripheral collisions at lowest RHIC BES energy. Minimum are observed for centralities bins in 0-50% collisions for $v_3^2/n_{ch,pp.}$ (pseudorapidity density of charged-particle multiplicity per participating nucleon pair) (*PRL* 116, 112302 (2016)) 17

Prospects for (v₃) PID measurements: STAR BES 1-2

Phys. Rev. C 88, 014902 (2013)

- NCQ-scaling holds for v2 of particles and anti-particles separately at all energies
 Do φ-mesons or multi-strange particles deviate?
- •NCQ-scaling is broken for v3 of particles and anti-particles separately for < 39 GeV

V_n (centrality) as a function of beam energy

V_n (centrality) shows the same trend for all energies from RHIC BES1: decreases with harmonic order n.

 V_n shows a monotonic increase with beam energy. The viscous coefficient, which encodes the transport coefficient (η/s), indicates a non-monotonic behavior as a function of beam energy.

STAR data: Anomalies in the Pressure and n/s?

Region of interest $\sqrt{s_{NN}} \lesssim 20$ GeV, however, is complicated by a changing B/M ratio, baryon transport dynamics, longer nuclear passing times, etc. Requires concerted modeling effort.

Elliptic Flow at AGS, SIS: from in-plane to out-of-plane (1)

Volume 83, Number 7

PHYSICAL REVIEW LETTERS

16 August 1999

Elliptic Flow: Transition from Out-of-Plane to In-Plane Emission in Au + Au Collisions

FIG. 2. Azimuthal distributions (with respect to the reconstructed reaction plane) for 2A, 4A, 6A, and 8A GeV Au + Au.


```
Passage time: 2R/(\beta_{cm}\gamma_{cm})
Expansion time: R/c_s
c_s=c\sqrt{dp/d\epsilon} - speed of sound
```


Elliptic Flow at AGS, SIS: from in-plane to out-of-plane (2)

v_n Flow at AGS, SIS: from in-plane to out-of-plane (3)

E895: for protons V2 changes sign at Elab=4 GeV. What about the other particle species? Other harmonics? Questions for STAR BES2, BM@N, CBM, NICA

v₂ Flow at SIS-AGS: scaling relations

FOPI: v₂ of protons from *Elab=0.09 to 1.49 GeV* Phys.Lett. B612 (2005) 173-180

Pt dependence of v2 of protons revealing a rapid change with incident energy below 0.4 AGeV, followed by an almost perfect scaling at the higher energies: 0.4 -2AGeV ₂₅

Flow at SIS: non-flow / fluctuations

26

Flow at SIS: rapidity dependence of v2 and EOS

HM – stiff momentum dependent with K=376 MeV SM – soft momentum dependent with K=200 MeV FOPI data : Nucl. Phys. A 876 (2012) 1 IQMD : Nucl Phys. A 945 (2016)

V2n=|V20|+|V22| Fit: V2(y0)=V20+V22*Y0^2

۱ ک

MPD(NICA): Flow performance study

Are flow measurements at SPS reliable?

PHENIX: RHIC/SPS: ~ 50% difference . STAR: RHIC/SPS ~ 10-15% difference in the differential flow results ! 30

Are flow measurements at RHIC reliable?

Do we understand the difference in v2 and v3 measurements between STAR and PHENIX ?

Are flow measurements at SIS reliable?

Occupancy effect on directed flow of pions in HADES

Flow performance study for FHCAL TDR (2016 -)

Technical Design Report for the MPD Experiment

Forward Hadron Calorimeter (FHCal)

December 2016

http://mpd.jinr.ru/doc/mpd-tdr/

FHCal coverage: 2.2<|η|< 4.8

Flow performance: v_n of charged hadrons: MPD (NICA)

34

Backup Slides

Flow is acoustic ! (R.A Lacey (SUNY)

- ► v_n measurements are sensitive to system shape (ε_n), system size (*RT*) and transport coefficients $(\frac{\eta}{s}, \frac{\zeta}{s}, ...)$. arXiv:1305.3341
- Acoustic ansatz
 - ✓ Sound attenuation in the viscous matter reduces the magnitude of v_n .

 $ln\left(\frac{v_n}{d}\right) \propto A \frac{\eta}{d} \left(\frac{dN}{d}\right)^{\frac{3}{3}}$

> Anisotropic flow attenuation,

$$\frac{\mathbf{v}_{n}}{\mathbf{\varepsilon}_{n}} \propto \mathbf{e}^{-\beta n^{2}}, \ \beta \propto \frac{\eta}{s} \frac{1}{\mathbf{RT}}$$

From macroscopic entropy considerations $S \sim (RT)^3 \propto \frac{dN}{dn}$

arXiv:1601.060 01 Roy A. Lacey, et PRC 88, 044915 (2013) E. Shuryak and I. Zahed

$$(Cn) = C(un) + U$$

$$(Cn) = C(un$$

PRC 84, 034908 (2011) P. Staig and E. Shuryak.

Roy A. Lacey, et al.

STAR: V₂ for different colliding systems

Flow Measurements at RHIC with STAR/PHENIX

STAR Event Plane Detector

- 2 Wheels of 12 supersectors with 31 optically-isolated tiles
 - 1.2-cm-thick scintillator
 - 3 turns of Wavelength shifting (WLS) fiber
- Total of 12x31x2=744 channels

- Successful install of 1/8th in 2017
- Construction complete
 - Install in Jan 2018
- EP resolution improved by ~1.5
- Time Resolution ~1 ns

Flow is partonic @ LHC

 $KE_T \&$

Alice - arXiv:1606.06057

 $(n_q)^{n/2}$ scaling validated for $v_n \rightarrow$ Partonic flow

The viscous coefficient vc shows a non-monotonic behavior with beam energy in both cases, n = 3 and n = 4. STAR Collaboration, Niseem Magdy, SQM 2016

MEPhl Relativistic Heavy-Ion Group

One of the youngest group in MEPhI. Est. in 2015

P. Parfenov (PhD student, MEPhI): Flow performance studies in MPD at NICA , FHCAL TDR (2016-2018)

NA61/SHINE [CERN SPS]

HADES (GSI) SIS-18

Эксперимент ХАДЕС