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Motivation

Overall observed multiplicity of different types of particles agrees with
the statistical model at temperatures above 160 MeV.

The phase transition temperature can be determined also by lattice
QCD methods → susceptibilities of higher orders were compared with
data associated with fluctuations → temperature lower than
160 MeV.

Susceptibilities manifest themselves in higher moments of the
multiplicity distribution.

The main aim of this work is to know how fast different moments of
the multiplicity distribution approch their equilibrium value and how
they evolve if the system slips off equilibrium.

The evolution of multiplicity distribution out of equilibrium is
described by a master equation.
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Master equation

We consider a binary process a1a2 ←→ b1b2 with a 6= b, eg.
πN → KΛ

The master equation for Pn(τ), the probability of finding n pairs b1b2

at dimensionless time τ has the following form

dPn

dτ
= ε [Pn−1 − Pn]−

[
n2Pn − (n + 1)2Pn+1

]
(1)

where n = 0, 1, 2, 3..., ε = G 〈Na1〉 〈Na2〉 /L, τ = t L/V -
dimensionless time variable, V /L = τ c

0 - relaxation time, V - proper
volume of the reaction

For thermal distribution of particle momentum → G - ”creation
term”, L - ”anihilation term” ⇒ thermal averaged cross section
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Generating equation

The master equation can be converted into the partial differential
equation for the generating function

g(x , τ) =
∞∑

n=0

xnPn(τ) (2)

From the derivative of the generating function we can easily
determine the moments.

Multiplying eq. (1) by xn and summing over n, we find

∂g(x , τ)

∂τ
=

L

V
(1− x)(xg ′′ + g ′ − εg), (3)

where g ′ ≡ ∂g/∂x
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The equilibrium solution, geq.(x), thus obeys the following equation:

xg
′′
eq + g

′
eq − εgeq = 0. (4)

The solution that is regular at x = 0 is then given by

geq(x) =
I0(2
√
εx)

I0(2
√
ε)

(5)

The average number of b1b2 pairs per event in equilibrium is given by

〈N〉eq = g ′eq(1) =
√
ε
I1(2
√
ε)

I0(2
√
ε)

(6)
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Time evolution of the factorial moments

The scaled second factorial moment

F2(τ) = 〈N(N − 1)〉 / 〈N〉2 , (7)

the scaled third factorial moment

F3(τ) = 〈N(N − 1)(N − 2)〉 / 〈N〉3 (8)

and the scaled fourth factorial moment

F4(τ) = 〈N(N − 1)(N − 2)(N − 3)〉 / 〈N〉4 . (9)

We let the distribution of the multiplicity approach equilibrium value
with the help of master equation.

For numerical calculations were used binomial initial conditions.
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Binomial initial conditions

We can assume that initially there is at most one particle in given
event

Then the initial conditions are

P0(τ = 0) = 1− N0 (10)

P1(τ = 0) = N0 (11)

Pn(τ = 0) = 0, n > 1 (12)

where N0 is initial averaged number of particles

In this case, the factorial moments then start at 0
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Time evolution of the 2nd, 3rd and 4th factorial moment
divided by its equilibrium value for ε = 0.1 and N0 = 0.005

All moments relax at the same time
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Real time and temperature dependent master equation

For further study purposes we want to add temperature and real time
dependence.

In case of constant temperature → equation formulated in
dimensionless time.

We will calculate the evolution for given chemical reaction
π+ + n→ K+ + Λ

Real time and temperature dependent master equation has the form

dPn

dt
(t) =

G

V
〈Na1〉 〈Na2〉 [Pn−1(t)− Pn(t)]

− L

V

[
n2Pn(t)− (n + 1)2Pn+1(t)

] (13)

where G ≡ 〈σGv〉 and L ≡ 〈σLv〉.
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Reaction π+ + n −→ K+ + Λ0.

Volume of the reaction is V = 125 fm3.

Cross section for this reaction is
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Real time and temperature dependent master equation -
gradual change of temperature

After complete thermalization of the factorial moments, the
temperature decreases according to the Bjorken model from the initial
temperature T0 = 165 MeV according to the relation

T = T0
t0

t
(14)

down to temperature T = 100 MeV, t0 is hadronisation time for
T = 165 MeV → t0 = 6 fm/c.

System volume varies according to the relationship

V = V0
t

t0
. (15)

We want to study the situation in which our chemical system
develops approximately as fast as the fireball expands → we vary the
cross-sections.
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Scaled factorial moments for gradual change of
temperature

Decrease from 165 MeV to
100 MeV

Thermalisation time around
10 fm/c

For 15 pions and 10 neutrons

200times enlarged cross section
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Freeze-out temperature

At the beginning we set the moments to equilibrium values → we let
them evolve → we are looking for a temperature at which the
thermalized system would lead to a given value of the factorial
moment in the equilibrium state → reverse determination of the
apparent freeze-out temperature
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Central moments

For data processing → central moments, event. their combination.

2nd central moment µ2 =
〈
N2
〉
− 〈N〉2.

3rd central moment µ3 =
〈
(N − 〈N〉)3

〉
.

4th central moment µ4 =
〈
(N − 〈N〉)4

〉
.

Coefficient of skewness S =
µ3

σ3
=

〈
(N − 〈N〉)3

〉
〈(N − 〈N〉)2〉3/2

.

Coefficient of kurtosis κ =
µ4

σ4
− 3 =

〈
(N − 〈N〉)4

〉
〈(N − 〈N〉)2〉2

− 3.
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Apparent freeze-out temperature for 3rd (left) and 4th
(right) central moment for gradual change of temperature

Decrease from 165 MeV to 100 MeV for different cross sections, for
15 pions and 10 neutrons

Different apparent freeze-out temperatures for every moment
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Apparent freeze-out temperature for coefficient of
skewness (left) and kurtosis (right) for gradual change of
temperature

Decrease from 165 MeV to 100 MeV for different cross sections, for
15 pions and 10 neutrons
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Other ratios of central moments

While the 2nd, 3rd and 4th central moment are decreasing, the
coefficient of skewness and kurtosis increases → it is dependent on
the ratio we choose.

Volume independent ratios → useful for comparison with
experimental data, eg.

R32 =
µ3

µ2
= Sσ (16)

or
R12 =

µ1

µ2
= M/σ2 (17)

where S is coefficient of skewness, σ is standard deviation and M is
number of particles 〈N〉.
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Coefficient R32 (left) and R12 (right) for gradual change of
temperature

Decrease from 165 MeV to 100 MeV for different cross sections, for
15 pions and 10 neutrons
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Conclusion - 1st part

Fluctuations in the strange particles number → the higher moments
seem to show a different temperature than what we really have.

We should be very careful when we want to extract the freeze-out
temperature from higher moments

In non-equilibrium state, higher factorial moments differ more from
their equilibrium values than the lower moments.

The behavior of the combination of the central moments depends on
the combination of moments we choose.
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Master equation for reaction p + π− → ∆0 → n + π0

We want to study fluctuations in baryon number (this is what we
measure)
Simplified system of one reaction p + π− → ∆0 → n + π0

Volume of the reaction is V = 125 fm3 and temperature drops from
T = 165 MeV to T = 100 MeV.
Cross section for this reaction is
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Scaled factorial moments for constant temperature

For temperature 165 MeV

Thermalisation time around
10 fm/c

For 15 protons and 10 pions

All moments relax at the same time
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Scaled factorial moments for gradual change of
temperature

Reactions run very fast and are frequent → moments do not change
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Conclusion - 2nd part

Factorial moments do not change in time for the gradual change of
temperature → no change in fluctuations in the proton and neutron
number.

The same conclusion → M. Kitazawa and M. Asakawa in articles:

M. Kitazawa, M. Asakawa, Revealing baryon number fluctuations from
proton number fluctuations in relativistic heavy ion collisions, Phys.
Rev. C 85 (2012) 021901(R)
M. Kitazawa, M. Asakawa, Relation between baryon number
fluctuations and experimentally observed proton number fluctuations in
relativistic heavy ion collisions, Phys. Rev. C 86 (2012) 024904
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Master equation for the pair of reactions

More complicated and sophisticated system

A pair of reactions wherein the product of one is also the reactant of
the other →

p + π− → ∆0 → n + π0, (18)

p + π0 → ∆+ → n + π+. (19)

We will now study the evolution of proton number

Master equation is very complicated → we show only results

For gradual change of temperature from 165 MeV to 100 MeV

For 30 protons and neutrons and 300 pions and volume
V = 1950 fm3 1

1inspired by the A. Andronic, P. Braun-Munzinger, J. Stachel article
arXiv:0812.1186v3
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Scaled factorial moments for gradual change of
temperature for the pair of reactions

Factorial moments do not change in time for the gradual change of
temperature → no change in fluctuations in the proton and neutron
number.

It is safe to use protons for extraction the freeze-out temperature
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Conclusions

In the 1st part → fluctuations in the strange particles number for the
reaction π + N → K + Λ with the strangeness production → we
should be very careful when we want to extract the freeze-out
temperature from higher moments

Comparison with experimental data from RHIC → in the process

In the 2nd part → no change in fluctuations in the proton and neutron
number for the simplified model of one reaction π + N → π + N

In the 3rd part → also no change in fluctuations in the proton and
neutron number for the system of two linked reactions
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Backup slides
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Master equation for rare processes
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Higher factorial moments in equilibrium state

We can express higher factorial moments by the derivative of the
generating function g(x , τ), which is given by eq. (2)

I also used these relations for modified Bessel functions

I
′
0(z) = I1(z) (20)

I
′
1(z) =

1

2
(I2(z) + I0(z)) (21)

I
′
2(z) =

1

2
(I3(z) + I1(z)) (22)

I
′
3(z) =

1

2
(I4(z) + I2(z)) (23)
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2nd factorial moment

The second derivative of the generating function is given by

g
′′
eq.(x) = −1

2

√
εx−3/2 I1(2

√
εx)

I0(2
√
ε)

+ ε
1

x

I2(2
√
εx) + I0(2

√
εx)

2I0(2
√
ε)

(24)

And then the equilibrium value of the second factorial moment has
the form

〈N(N − 1)〉eq. = g
′′
eq.(1) = −1

2

√
ε
I1(2
√
ε)

I0(2
√
ε)

+
1

2
ε
I2(2
√
ε) + I0(2

√
ε)

I0(2
√
ε)

(25)
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3rd factorial moment

The third derivative of the generating function is given by

g
′′′
eq.(x) =

3

4
x−5/2√ε I1(2

√
εx)

I0(2
√
ε)
− 5

4
ε

1

x2

I2(2
√
εx) + I0(2

√
εx)

I0(2
√
ε)

+
1

2
ε3/2 1

x3/2

I3(2
√
εx) + 3I1(2

√
εx)

2I0(2
√
ε)

(26)

And then the equilibrium of the third factorial moment has the form

〈N(N − 1)(N − 2)〉eq. = g
′′′
eq.(1) =

3

4

√
ε
I1(2
√
ε)

I0(2
√
ε)
− 5

4
ε
I2(2
√
ε) + I0(2

√
ε)

I0(2
√
ε)

+
1

4
ε3/2 I3(2

√
ε) + 3I1(2

√
ε)

I0(2
√
ε)

(27)
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4th factorial moment

The fourth derivative of the generating function is given by

g IV .
eq. (x) =

3

8
ε

1

x3

I2(2
√
εx) + I0(2

√
εx)

I0(2
√
ε)

− 15

8

√
εx−7/2 I1(2

√
εx)

I0(2
√
ε)

+
5

2
ε

1

x3

I2(2
√
εx) + I0(2

√
εx)

I0(2
√
ε)

− 5

8
ε3/2 1

x5/2

I3(2
√
εx) + I1(2

√
εx)

I0(2
√
ε)

−3

8

1

x5/2

I3(2
√
εx) + 3I1(2

√
εx)

I0(2
√
ε)

+
1

8
ε2 1

x2

I4(2
√
εx) + 2I2(2

√
εx) + I0(2

√
εx)

I0(2
√
ε)

(28)
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And then the equilibrium value of the fourth factorial moment has the
form

〈N(N − 1)(N − 2)(N − 3)〉eq. = g IV .
eq. (1) =

23

8
ε
I2(2
√
ε) + I0(2

√
ε)

I0(2
√
ε)

−15

8

√
ε
I1(2
√
ε)

I0(2
√
ε)
− ε3/2 4I3(2

√
ε) + 7I1(2

√
ε)

4I0(2
√
ε)

+
1

8
ε2 I4(2

√
ε) + 2I2(2

√
ε) + I0(2

√
εx)

I0(2
√
ε)

(29)
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Time evolution of the 2nd factorial moment for the
binomial initial conditions. The 2nd factorial moment for
different values of the averaged initial number of particles
N0 and for ε = 0.1
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2nd, 3rd and 4th factorial moment for the binomial initial
conditions for ε = 0.1 and N0 = 0.005
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Temperature dependent master equation

Because of averaging over relative velocities, we will assume that the
momenta are distributed according to Boltzmann distribution

ni (p) ∝ exp

−
√

m2
i + p2

T

 . (30)

The averaged cross section is then obtained as

〈
vijσ

X
ij

〉
=

∫∞√
s0
dxσX

ij (x)K1(
x

T
)
[
x2 − (mi + mj )

2
] [
x2 − (mi −mj )

2
]

4m2
i m

2
j TK2(mi/T )K2(mj/T )

(31)
where Ki ’s are the modified Bessel functions and√
s0 = max(mi + mj ,Σfinalma) is the reaction threshold.
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If we know cross section for the reactions a1a2 → b1b2, the cross
section for the inverse reactions follows from phase-space
considerations as

σ34−→12(
√
s) =

(2J3 + 1)(2J4 + 1)

(2J1 + 1)(2J2 + 1)

p2
cm(s,m1,m2)

p2
cm(s,m3,m4)

× σ12−→34(
√
s)

(32)
where Ji and mi are spins and masses of the participating species,
and pcm is the center-of-mass momentum defined as

p2
cm(s,m1,m2) =

[
s − (m2

1 + m2
2)
]2 − 4m2

1m
2
2

4s
. (33)
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Temperature dependent master equation - constant
temperature

4th factorial moment divided by its equilibrium value for different
temperatures T = 165 MeV, T = 145 MeV and T = 125 MeV for 15

pions a 10 neutrons.
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Master equation for reaction p + π− → ∆0 → n + π0

For pion-nucleon cross section we have

σ(π+p → ∆++) =
326, 5

1 + 4

(√
s − 1, 215

0, 110

)2

q3

q3 + (0, 18)3
[mb], (34)

where q is the cm momentum

q =

[
(s − (mπ + mp)2)(s − (mπ −mp)2)

4s

]1/2

=
mp√
s
plab [GeV/c].

(35)
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Master equation for the pair of reactions

A pair of reactions wherein the product of one is also the reactant of
the other →

p + π− → ∆0 → n + π0, (36)

p + π0 → ∆+ → n + π+. (37)

The master equation for Pa(τ), the probability of finding a protons at
time t has the following form

dPa(t)/dt = k [(a + 1)(β − α + a + 1)Pa+1 − a(β − α + a)Pa]

+l [(γ + α− a + 1)(δ + α− a + 1)Pa−1 − (γ + α− a)(δ + α− a)Pa]

+m [(a + 1)(δ − α + a + 1)Pa+1 − a(δ − α + a)Pa]

+n [(γ + α− a + 1)(ε+ α− a + 1)Pa−1 − (γ + α− a)(ε+ α− a)Pa] ,
(38)

where α, β, γ, δ, ε are the initial numbers of particles.
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