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• Spatially homogeneous system of gluons, isotropic in momentum
space. Evolve using QCD Boltzmann equation.

• For certain initial conditions a Bose-Einstein condensate forms in
finite time

• We extend this beyond the onset of condensation, and introduce
anisotropy
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The Anatomy of a Collision

z 

t

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

• Equilibriation is fast - O(1 fm)

• So why the Boltzmann equation?
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Relativistic Hydrodynamics

• Ideal Hydro
◦ Works well

◦ “Equilibriation” is instantaneous

• Dissipative Hydro
◦ Can consider off-equilibrium systems

◦ No relativistic equivalent to
Navier-Stokes equations
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A more microscopic approach

• Can derive hydrodynamics from the Boltzmann equation

• Perhaps worth investigating the problem using this directly?

• Boltzmann equation treats the QGP as a dilute particle gas

• Hydro only assumes energy-momentum conservation - is the
particle approach appropriate at high energies?

• Boltzmann equation is computationally difficult - but let’s do it!
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Boltzmann equation

• Gluon plasma subject to elastic, number-conserving two-body
collisions. Dt f = C [f ], where

C [f ] =
1

2

∫
2,3,4

|M12→34|2(2π)4δ(p1 + p2 − p3 − p4)(f3f4f̄1f̄2 − f1f2f̄3f̄4).

• This is a nonlinear integro-differential equation. Solving it is...
non-trivial.
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The H-theorem

• Can, however, describe some properties without solving it. By the
H-theorem,

feq(x , p) =

[
Exp

(
pνuν(x)− µ(x)

T (x)

)
− 1

]−1
• Here uν is the particle 4-current, µ is a chemical potential and T is

the temperature.

• There is one caveat.
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Bose-Einstein condensation

• There exist certain initial distributions of gluons that are
“overpopulated” with respect to equilibrium.

• Consider the CGC-inspired family of spherically symmetric
distribution functions
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• For f (p) = f0θ(1− p/Qs)

ε0 = f0
1

2π2

∫ Qs

0
dp p3 = f0

Q4
s

8π2
,

n0 = f0
1

2π2

∫ Qs

0
dp p2 = f0

Q3
s

6π2
.

• Now consider the number and energy densities for the equilibrium
Bose distribution:

εeq(T , µ) =
1

2π2

∫ ∞
0

dp
p3

e(p−µ)/T − 1
=

3T 4

π2
Li4(eµ/T )

neq(T , µ) =
1

2π2

∫ ∞
0

dp
p2

e(p−µ)/T − 1
=

T 3

π2
Li3(eµ/T )

9 of 32



• Consider contours of constant n and ε

n0 = neq; ε0 = εeq

r ≡ nε−3/4; rcrit = 0.28
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Relaxation Time Approximation

• From the initial condition we always
know the final distribution function -
can make an ansatz.

∂t f =
pµuµ
p0

f∞ − f

τ

• In a sense we have “averaged over”
the collision term. An analytic solution
exists, viz.

f (t) = f∞ + (f0 − f∞)e
−
(

pµuµ
p0

t
τ

)
.
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How good is the RTA?

• Approaches equilibrium exponentially

• Can model the growth of the
condensate

• Relaxation time parameter τ has to be
set by hand

• No QCD features though

• Ultimately we would like to use
something closer to the truth
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The Fokker-Planck Equation

• Under the assumption that small scattering angle collisions
dominate, it is possible to recast the collision term as the
divergence of a current,

Dt f = C [f ]
soft−−−−−→

scattering
∇ · J

where

J (p) = Ia∇f + Ibf f̄ p̂ + (∇f · p̂)I + (∇f × p̂)× I.

• Ia =
∫
f f̄ , Ib =

∫
2f
p and I ≡ (Ix , Iy , Iz) =

∫ ~p
p f f̄ are functionals

of the distribution function.
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The scheme for isotropic initial conditions
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The basic idea of the implementation

• First discretize the phase space. Next interpolate over the arbitrary
initial distribution function.

• Numerically integrate to obtain the particle number in each cell.

• Calculate the particle flux at the boundaries between cells and
update the particle number using the forward Euler method.

• From analytical expressions for the integrals of your interpolating
functions, use rootfinding to obtain the new distribution function

• As my supervisor is fond of saying, the devil is in the details.
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An interpolation ansatz

• For overpopulated initial conditions, the equilibrium distribution is
singular at the origin

feq =
1

ep/T − 1

• A linear interpolation would fail

• Instead we interpolate with piecewise Bose distributions

• Many nice properties, including an exact interpolation of the
equilibrium distribution
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Some results
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feq = 1/(eg(p) − 1); ln

(
1 + f

f

)
= g(p)
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Some results
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Evolution of the condensate over time

• Onset of condensation: 50τ ≈ 2 fm/c .
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Some results
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Some results
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Estimating the relaxation time
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RTA vs Fokker-Planck: Overpopulated fi
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RTA vs. Fokker-Planck: Condensate Formation
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Cylindrical Symmetry & Anisotropy
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A Measure of Anisotropy

• We define the “anisotropy parameter”,

α ≡
T 22
LRF

T 33
LRF

• Tµν
LRF is the energy-momentum tensor in the local rest frame

• For cylindrically symmetric f (p), T 11 = T 22 = P⊥ is the
transverse pressure

• T 33 = Pz is the longitudinal pressure.
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Equilibriation vs Isotropization
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Equilibriation vs Isotropization
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Conclusion

• In summary, we have developed an efficient numerical scheme to
solve the QCD Boltzmann equation in the small scattering angle
approximation.

• Our work extends the results of Blaizot et al. to systems with
cylindrically symmetric momentum distributions

• We also handle the dynamics of the formation of the Bose-Einstein
condensate.

• Thank you!
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