Challenges for hydrodynamic modeling at [NICA] energies

Iurii KARPENKO

CNRS - SUBATECH Nantes

IK, Huovinen, Petersen, Bleicher, Phys. Rev. C 91, 064901 (2015)
Auvinen, IK, Bernhard, Bass, Phys. Rev. C 97, 044905 (2018)
P. Batyuk et al., Phys. Rev. C 96, 024911 (2017)

Introduction: heavy ion collision in pictures
https://www.jyu.fi/fysiikka/tutkimus/suurenergia/urhic/anim1.gif/image_view_fullscreen

Hybrid model: initial state + hydrodynamic phase + hadronic cascade $\cup_{\text {thermalization — }} \underbrace{}_{\text {particlization }}$ \qquad

Freeze-out procedure

Initial stage

Models for initial conditions at high energies (full RHIC, LHC)

- Glauber: geometric model determining wounded nucleons based on the inelastic nucleon-nucleon cross section (whole family of variants)
- Wounded quark model
- Color Glass Condensate (CGC)
- MC-KLN: CGC-based model using kT-factorization
- IP-Glasma: CGC-based model using classical Yang-Mills evolution of early-time gluon fields
- EKRT: perturbative QCD + saturation
- EPOS: pomeron picture
- AMPT, HIJING: minijets + strings
- UrQMD (hadron/string), BAMPS (partons)

Different models provide different shapes of initial state

C. Gale et al, Int. J. of Mod. Phys. A, Vol. 28, 1340011 (2013)
...and it affects observables (from the model)
C. Shen et al., J. Phys. G38, 124045 (2011)

Different initial eccentricity in from Glauber and KLN models \Downarrow
Different resulting elliptic flow

$$
\Downarrow
$$

Factor 2 difference in 'extracted' η / s from comparison to experimental data!

None of those models lead to thermalization!

What we need: energy-momentum tensor of ideal fluid in the local rest frame

$$
T_{\mathrm{LRF}}^{\mu \nu}=\left(\begin{array}{cccc}
\varepsilon & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)
$$

How we can match initial state to hydrodynamics:

- Take only $T^{00}=\varepsilon$ from initial state, assume zero initial velocities (and ignore the rest of $T^{\mu v}$ from the initial state)
- Take $T^{00}, T^{0 i}$ and recalculate initial energy density ε and initial velocities u_{ini}^{μ} assuming hydrodynamical EoS $p=p(\boldsymbol{\varepsilon})$ (and ignore $T^{i j}$ from the initial state)
- Take $T^{\mu \nu}$, find Landau frame and extract $\varepsilon=T$ and u^{μ} (and ignore that $T^{i i}$ differ from equilibrium pressure)

Additional challenges at [NICA] energies

- Initial state: thick pancakes
- boost ivariance is not a good approximation
\rightarrow need for 3 dimensional initial state
- CGC picture does not work as well anymore

C. Shen, B. Schenke,

Phys. Rev. C 97, 024907 (2018)

Which of the models above qualify for NICA?

- Glauber: geometric model determining wounded nucleons based on the inelastic nucleon-nucleon cross section (whole family of variants)
- Wounded quark model
- Color Glass Condensate (CGC)
- MC-KLN: CGC-based model using kT-factorization
- IP-Glasma: CGC-based model using classical Yang-Mills evolution of early-time gluon fields
- EKRT: perturbative QCD + saturation
- EPOS: pomeron picture
- AMPT, HIJING: minijets + strings
- UrQMD (hadron/string), BAMPS (partons)

Initial stage in vHLLE+UrQMD

- pre-thermal evolution: UrQMD cascade
- scatterings allowed until $\sqrt{t^{2}-z^{2}}=\tau_{0}$
- minimal starting time is $\tau_{0}=\frac{2 R}{\gamma v_{z}}$

"Thermalization"

At $\tau=\tau_{0}$ the energy/momentum P^{α}, baryon and electric charges N^{0} of every particle are deposited into fluid cells according to:

$$
\begin{aligned}
\Delta P_{i j k}^{\alpha} & =P^{\alpha} \cdot C \cdot \exp \left(-\left(\Delta x_{i}^{2}+\Delta y_{j}^{2}\right) / R_{\perp}^{2}-\Delta \eta_{k}^{2} \gamma_{\eta}^{2} \tau_{0}^{2} / R_{\eta}^{2}\right) \\
\Delta N_{i j k}^{0} & =N^{0} \cdot C \cdot \exp \left(-\left(\Delta x_{i}^{2}+\Delta y_{j}^{2}\right) / R_{\perp}^{2}-\Delta \eta_{k}^{2} \gamma_{\eta}^{2} \tau_{0}^{2} / R_{\eta}^{2}\right)
\end{aligned}
$$

Next challenge:
At [NICA], pre-hydro stage in a "sandwich" approach is too long:

UrQMD 3.4 (UrQMD IC + ideal hydro + UrQMD afterburner)
J. Auvinen, H. Petersen, Phys.Rev.C 88:064908,2013

b) Charged hadrons, $b=8.2-9.4 \mathrm{fm}$

lurii Karpenko, Challenges for hydrodynamic modeling at [NICA] energies

One must start hydro description early!

Multi-fluid dynamics

Hydrodynamic description starts from the very beginning of the collision.

Difficulty: reasonability of fluid description at the very start of heavy ion collision?

Dynamical fluidization (1 fluid)
Regions of fluid phase are created dynamically, where (and when) the density is large enough.

Difficulty: how to treat non-fluid and fluid phase together (in the intial state)?

3-Fluid Dynamics

Baryon
Stopping
JINR,
24.08 .10

Model
Rapidity
Density
Fil
Reduced
curvature
Trajectorie
Crossover
Summary

Produced particles populate mid-rapidity \Rightarrow fireball fluid

momentum along beam

Target-like fluid:

$$
\begin{gathered}
\quad \partial_{\mu} J_{t}^{\mu}=0 \\
\text { Leading particles carry bar. charge }
\end{gathered}
$$

$\partial_{\mu} T_{t}^{\mu \nu}=-F_{t p}^{\nu}+F_{f t}^{\nu}$ exchange/emission

$$
\text { Projectile-like fluid: } \quad \partial_{\mu} J_{p}^{\mu}=0, \quad \partial_{\mu} T_{p}^{\mu \nu}=-F_{p t}^{\nu}+F_{f p}^{\nu}
$$

Fireball fluid: $\quad J_{f}^{\mu}=0, \quad \partial_{\mu} T_{f}^{\mu \nu}=F_{p t}^{\nu}+F_{t p}^{\nu}-F_{f p}^{\nu}-F_{f t}^{\nu}$

Source term Exchange
The source term is delayed due to a formation time $\tau \sim 1 \mathrm{fm} / \mathrm{c}$
Total energy-momentum conservation:

$$
\partial_{\mu}\left(T_{p}^{\mu \nu}+T_{t}^{\mu \nu}+T_{f}^{\mu \nu}\right)=0
$$

http://theory.gsi.de/~ivanov/mfd/
Yu.B. Ivanov, V.N. Russkikh and V.D. Toneev, Phys. Rev. C73, 044904 (2006)

[advertisement] THESEUS: 3-Fluid Dynamics + UrQMD

P. Batyuk, D. Blaschke, M. Bleicher, Yu. B. Ivanov, Iu. Karpenko, S. Merts, M. Nahrgang, H. Petersen, and O. Rogachevsky, Phys. Rev. C 94, 044917 (2016) The scheme: 3-fluid hydro + particlization + hadronic cascade

Hydrodynamic stage

Hydrodynamic stage

Energy-momentum/charge conservation: Evolution equations for shear/bulk,

$$
\partial_{; v} T^{\mu v}=0, \quad \partial_{; v} N^{v}=0
$$ coming from Israel-Stewart formalism:

$$
\begin{gathered}
<u^{\gamma} \partial_{; \gamma} \pi^{\mu v}>=-\frac{\pi^{\mu v}-\pi_{\mathrm{NS}}^{\mu \nu}}{\tau_{\pi}}-\frac{4}{3} \pi^{\mu v} \partial_{; \gamma} u^{\gamma} \\
u^{\gamma} \partial_{; \gamma} \Pi=-\frac{\Pi-\Pi_{\mathrm{NS}}^{\mu v}}{\tau_{\pi}}-\frac{4}{3} \Pi \partial_{; \gamma} u^{\gamma}
\end{gathered}
$$

Couple public 3+1D hydro codes available, one of them is:
vHLLE code: free and open source. Comput. Phys. Commun. 185 (2014), 3016 https://github.com/yukarpenko/vhlle

Inputs:

(1) equation of state (EoS)
(2) transport coefficients: $\tau_{\pi}, \eta / s$

1) EoS at high energies: kingdom of Lattice QCD

Lattice QCD calculations are constantly improving, and as for now

- there is a good agreement with hadron resonance gas at low temperatures

Borsányi et al, Phys. Lett. B 370 (2014) 99-104

Lattice QCD calculations are constantly improving, and as for now

- thermodynamic quantities can be evaluated at finite baryon chemical potential, up to $\mu_{\mathrm{B}} / T=2.5 \ldots 3$

Borsányi et al, JHEP 1208, 053 (2012)
$\mu_{L}=3 \cdot \mu_{B}$
This is not enough for hydro modeling at lower energies!

\Rightarrow EoS models (used in vHLLE+UrQMD)

Chiral model

J. Steinheimer, et al, J. Phys. G 38, 035001 (2011)

- good agreement with lattice QCD at $\mu_{B}=0$
- crossover type PT between confined and deconfined phases at all μ_{B}

Hadron resonance gas + Bag Model
P.F. Kolb, et al, Phys.Rev. C 62, 054909 (2000)
(a.k.a. EoS Q)

- hadron resonance gas made of u, d quarks including repulsive meanfield
- Maxwell construction resulting in $1^{s t}$ order PT

2) Transport coefficients:

- η / s may grow with μ_{B}, and potentially hit the limit for applicability of I-S viscous hydro.

Evolution near T_{C} :

- Bulk viscosity ζ / s may be strongly enhanced near T_{c} (F. Karsch et al, 2008; Y. Aoki et al, 2008)
- which may be a manifestation of a more general phenomenon: timescale separation $\tau_{\text {micro }} \ll \tau_{\text {macro }}$ is broken.
M. Stephanov, Y. Yin, arXiv:1712.10305 (Hydro+)

Post-hydro stage

Fluid \rightarrow particle transition and hadronic phase

Credit: MADAI.us

- Cooper-Frye prescription at $\varepsilon=\varepsilon_{\mathrm{sw}}$:

$$
\begin{gathered}
p^{0} \frac{d^{3} n_{i}}{d^{3} p}=\sum f(x, p) p^{\mu} \Delta \sigma_{\mu} \\
f(x, p)=f_{\mathrm{eq}} \cdot\left(1+\left(1 \mp f_{\mathrm{eq}}\right) \frac{p_{\mu} p_{v} \pi^{\mu v}}{2 T^{2}(\varepsilon+p)}\right)
\end{gathered}
$$

- $\Delta \sigma_{i}$ using Cornelius subroutine*
- Hadron gas phase: back to UrQMD cascade

[^0]
Modeling
 And (hopefully) making physics conclusions from it

An example from (relatively) early days

Success of ideal hydrodynamics

Kolb, Heinz, Huovinen et al ('01) minbias $\mathrm{Au}+\mathrm{Au}$ at RHIC

not perfect agreement but plasma EoS favored
ideal fluid? - so how ideal is plasma actually. . . ?

As hydro models evolved, this became more complicated...
Although all models based on hydrodynamic approach are called 'hydro models', they have freedom in:

1) initial state
2) EoS
3) transport coefficients $\left(\eta / s, \zeta / s, \tau_{\pi}, \ldots\right)$
4) freezeout procedure.

- All the freedom (parameters) cannot be fixed by comparison to just one observable (i.e. elliptic flow)
- The parameter dependence is non-factorizable

Fitting experimental data with a model is not possible, because evaluating model output for single point in the parameter space requires many CPU hours.

A challenge?

Eyeball fitting with vHLLE+UrQMD

Free parameters of the model:

- hydro starting time (=duration of pre-hydro phase) τ_{0}
- transverse smearing of initial state R_{\perp}
- longitudinal smearing of the initial state R_{z}
- shear viscosity η / s
- fluid-to-particle transition (particlization) $\varepsilon=0.5 \mathrm{GeV} / \mathrm{fm}^{3}$

Learning parameter dependence

Response of the observables:

- $T_{\text {eff }}$, inverse slope of p_{T} spectrum
- $d N / d y$ at midrapidity
- p_{T} integrated $v_{2}\{\mathrm{EP}\}$
to the change of every parameter with respect to its default value.

lurii Karpenko, Challenges for hydrodynamic modeling at [NICA] energies

$40+158 \mathrm{~A} \mathrm{GeV} \operatorname{PbPb}$ SPS $(\sqrt{s}=8.8$ and 17.3 GeV$)$

lurii Karpenko, Challenges for hydrodynamic modeling at [NICA] energies

RHIC BES + top RHIC

The rapidity/pseudorapidity and p_{T} distributions from SPS/NA49 together with RHIC are reasonably reproduced.

Elliptic and triangular flows at RHIC BES + top RHIC

v_{2}, v_{3} vs collision energy

v_{3} : prediction!
v_{2}, v_{3} vs centrality

Peripheral events: too strong smearing for smaller system

Parameter values used to approach the data

EoS: Chiral model, $\quad \varepsilon_{\mathrm{sw}}=0.5 \mathrm{GeV} / \mathrm{fm}^{3}$.

\sqrt{s} $[\mathrm{GeV}]$	τ_{0} $[\mathrm{fm} / \mathrm{c}]$	R_{\perp} $[\mathrm{fm}]$	R_{z} $[\mathrm{fm}]$	η / s
7.7	3.2	1.4	0.5	0.2
8.8	2.83	1.4	0.5	0.2
11.5	2.1	1.4	0.5	0.2
17.3	1.42	1.4	0.5	0.15
19.6	1.22	1.4	0.5	0.15
27	1.0	1.2	0.5	0.12
39	0.9^{*}	1.0	0.7	0.08
62.4	0.7^{*}	1.0	0.7	0.08
200	0.4^{*}	1.0	1.0	0.08

*here we increase τ_{0} as compared to $\tau_{0}=\frac{2 R}{\gamma v_{z}}$.

Green band:
same v_{2} and $\pm 5 \%$ change in $T_{\text {eff }}$.

* The green band is not an actual error bar.

Can we do better?

Emulator + MCMC technique:

(Hydrodynamic) model	- slow, but 'exact'		
\Downarrow			
Gaussian process emulator			
\Downarrow			
Markov Chain Monte Carlo (MCMC) a fast but inexact proxy for the model			- walking in the parameter space
:---			

One example: constraining the EoS of QGP matter

S. Pratt, E. Sangaline, P. Sorensen, H. Wang, Phys. Rev. Lett. 114, 202301 (2015)

What about vHLLE+UrQMD? J. Auvinen, analysis at $\sqrt{s_{N N}}=62.4 \mathrm{GeV}$

This hybrid model $+$
Gaussian processes (emulator) $+$
Markov chain Monte Carlo

Auvinen, Bernhard, Bass, IK Phys. Rev. C 97, 044905 (2018)

What about vHLLE+UrQMD? J. Auvinen, analysis at $\sqrt{s_{N N}}=19.6 \mathrm{GeV}$

This hybrid model $+$
Gaussian processes (emulator) $+$
Markov chain Monte Carlo

Auvinen, Bernhard, Bass, IK Phys. Rev. C 97, 044905 (2018)
J. Auvinen, Bayesian analysis with vHLLE+UrQMD

Auvinen, Bernhard, Bass, IK, Phys. Rev. C 97, 044905 (2018)

Few more thoughts

Finding signals of mixed phase is not as easy as it seemed

D. Rischke et al, Heavy Ion Phys. 1 (1995) 309

- non-monotonic directed flow of net protons predicted as a signal of $1^{\text {st }}$ order PT
- in up-to-date hybrid model the signal vanishes
J. Steinheimer et al,

Phys. Rev. C 89 (2014) 054913

There are challenges to properly include some effects

Steinheimer, Randrup, PRL 109 (2012), 212301

Steinheimer, Koch, arXiv:1705.08538

Basic experimental observables from BES are important

They are as important as 'exciting' ones!
To extract the η / s we used:

- v_{2} : new STAR results

Phys. Rev. C 86 (2012) 54908
Au-Au system

- p_{T} distributions: old NA49 data (in limited p_{T} range) $\mathrm{Pb}-\mathrm{Pb}$ system

...2017: p_{T} spectra for BES energies from STAR, arXiv:1701.07065

List of challenges as conclusions

- Initial state: rapidity dependence
- Initial state: baryon, electric, strange densities
- Complex geometry of initial state
- EoS: baryon density dependence
- Break-up of hydro near T_{C}
- Shorter duration of hydro, so more dependence on the initial state
- Non-factorizable dependence on the model parameters

The end (so far).

Thank you for your attention!

[^0]: *Huovinen and Petersen, Eur.Phys.J. A 48 (2012), 171

