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A brief account of Zubarev’s NSOM

“Relevant observables” 〈Pm〉t ≡ Tr (Pm%(t))

The quantum Liouville equation with a boundary condition
(Zubarev’s NSOM)

∂%(t)
∂t

+
1
i~
[
%(t),H

]
= −ε {%(t)− %rel(t)} , ε→ +0

The general form of the relevant statistical operator (It
corresponds to the maximum of entropy with given values of
〈Pm〉t :

%rel(t) = Z−1(t) exp

{
−
∑

m

Fm(t)Pm

}
,

where Fm(t) are the Lagrange multipliers.
The self-consistency conditions (nonequilibrium equations of
state)

〈Pm〉t = 〈Pm〉trel ≡ Tr
{

Pm%rel(t)
}
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A brief account of Zubarev’s NSOM

Generalized transport equations for observables

∂〈Pm〉t

∂t
= 〈Ṗm〉trel +

∑
n

∫ t

−∞
e−ε(t−t ′) Lmn(t , t ′)Fn(t ′) dt ′,

where Ṗm = [Pm,H]/i~, and Lmn(t , t ′) are the generalized “kinetic
coefficients”.

Comments:
1) Despite the formally simple structure, the generalized transport

equations are in fact very complicated (projected evolution in Lmn(t , t ′)
etc.).

2) Kinetic coefficients contain “memory” effects. The Markovian
approximation is adequate only if the set of observables {〈Pm〉t}
describes all relevant long-lived correlations.
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Kinetic description of nonequilibrium correlated systems

The model Hamiltonian (for illustration): H = H0 + H ′

H0 =
∑
11′

h(1′,1) a†1′a1 H ′ =
1
2

∑
121′2′

V2(1′2′,12) a†2′a†1′a1a2,

where the label k denotes a complete set of single-particle quantum
numbers.

Kinetic description in terms of reduced density matrices:

fs(1 . . . s,1′ . . . s′; t) = 〈a†s′ . . . a†1′a1 . . . as〉t , s = 1,2, . . .

Hierarchy for the reduced density matrices

∂

∂t
fs(1 . . . s,1′ . . . s′; t)− 1

i~
〈 [ a†s′ . . . a†1′a1 . . . as,H ] 〉t

= −ε
{

fs(1 . . . s,1′ . . . s′; t)− f̄s(1 . . . s,1′ . . . s′; t)
}
,

where f̄s(1 . . . s,1′ . . . s′; t) = Tr
(
%rel(t) a†s′ . . . a†1′a1 . . . as

)
.
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Kinetic description of nonequilibrium correlated systems

Comments:
1) For macroscopic systems, it is expected that all boundary

conditions are equivalent if one deals with exact solutions of the
hierarchy.

2) Similar approximations in the hierarchy lead to different kinetic
equations for different boundary conditions.

3) The Markovian approximation is adequate only if %rel(t) describes
all relevant long-lived correlations.

4) For example, complete weakening of initial correlations
(Bogoliubov’s boundary condition):

%rel(t) = Z−1(t) exp
{
−λ1(1′,1; t) a†1′a1

}
, f1(t) = f̄1(t)

Relevant correlations: ḡ2(t) = f̄2 − f̄1 f̄1 = 0. NB: In this case
nonequilibrium correlations manifest themselves through memory
effects.
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Examples of relevant long-lived correlations

“Cluster” correlations (e.g., binary correlations)

%rel(t) = Z−1(t) exp
{
− λ1(1′,1; t)a†1′a1 −

1
2
λ2(1′2′,12; t) a†2′a†1′a1a2

}
Relevant correlations: ḡ2(t) = g2(t).
Applications: dense systems with bound states.

“Hydrodynamic” correlations:

%rel(t) = Z−1(t) exp
{
− λ1(1′,1; t)a†1′a1 −

∫
dr β(r , t)H(r)

}
Relevant correlations: ḡ2(t) = ḡ2[β(t), λ1(t)]; β(r , t) plays the role of
“inverse quasi-temperature”.

Physical arguments:

The energy conservation implies that 〈H(r)〉t is a “slow varying quantity”
on the kinetic and hydrodynamic time scales.

The average 〈H(r)〉t is not determined completely by f1(t), so that the
energy density must be treated as an independent relevant observable.
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Examples of relevant long-lived correlations
Features of kinetic equations

Bogoliubov’s boundary condition (weak interaction or low density)
Markovian Boltzmann-type kinetic equations for f1(t) . Correlations are
included through memory effects (the so-called “Levinson kinetic
equations”). Problems with energy conservation and the equilibrium
solution.

“Cluster” correlations
A Markovian kinetic equation for f1 coupled with a relaxation equation for
“cluster” correlation functions, e.g., for g2(t). Correct conservation laws
and equilibrium solutions. Problems with approximations in the transport
equations (to ensure the energy conservation!).

“Hydrodynamic” correlations
A Markovian kinetic equation for f1(t) coupled with hydrodynamic
equations. Cross-sections in the kinetic equation depend on ḡ2. Correct
conservation laws and equilibrium solutions.
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Unification of kinetics and hydrodynamics for correlated systems

Conservation laws account for nonequilibrium long-lived many-particle
correlations. The energy conservation is of special importance because
the density of the interaction energy is determined by f2(t) (not by f1(t)).
Thus, strictly speaking, kinetic processes must always be treated
together with the evolution of locally conserved quantities, i.e., with
hydrodynamic processes.

Literature:

Classical gases. The Bogoliubov (BBGKY) hierarchy with modified
boundary conditions
Zubarev D.N., Morozov V.G., Teor. Mat. Fiz. 60, 270 (1984)
Theoret. and Math. Phys. 60, 814 (1984) (Eng. transl.)
The Markovian binary collision approximation leads to the Enskog-type
kinetic equation (instead of the Boltsmann equation)
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Unification of kinetics and hydrodynamics for correlated systems

Dense quantum systems. Inclusion the mean energy into the set of
relevant variables
Morozov V.G. and Röpke G., Physica A 221, 511 (1995)
Quantum generalization of the Enskog approach. Collision integrals
include the two-particle correlation matrix ḡ2. The kinetic equation
conserves the total energy.

Correlation contributions in non-Markovian kinetic equations
Morozov V.G. and Röpke G., J. Stat. Phys. 102, 285 (2001)
Nonequilibrium “hydrodynamic” correlations contribute to non-Markovian
kinetic equations even in the Born approximation (weak interaction). It is
precisely the interplay between collisions and correlations that is
responsible for the correct behavior of non-Markovian collision integrals
(e.g., the energy conservation and cancellation between the “collision”
and “correlation” contributions in equilibrium).
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Some challenges

Inclusion of nonequilibrium “cluster” and/or “hydrodynamic”
correlations in the Green’s function method
The “Mixed” Green’s function approach to quantum kinetics with
initial correlations:
Morozov V.G., Röpke G., Ann. Phys. 278, 127 (1999)
Nonequilibrium correlations in relativistic kinetics
At the moment the relativistic kinetic theory does not go beyond
the quasiparticle picture.
Application of the Enskog-type quantum kinetic equations to
heavy-ion collisions
An attractive feature of the Enskog-type equations: an
interpolation approach applicable to the transition
(Fermi liquid)→ (semi-quantum dense hot matter)→
(a low density gas).
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