

20-25 October 2024 Yerevan Armenia

Peculiarities of Buzdin and Chimera Steps in the IV-Curve of Superconductor Ferromagnetic φ_0 Josephson Junction

M. Nashaat

BLTP – JINR (Russia) Cairo University (Egypt)

In collaboration with

K. Kulikov, E. Kovalenko, J. Tekic, I. R. Rahmanov, Yu. M. Shukrinov

Outline

Introduction to Josephson effect

Anomalous Josephson Junctions

Dynamical equations for ϕ_0 -JJ

Shaprio, Buzdin and chimera steps in ϕ_0 -JJ

B. D. Josephson Phys. Lett. (1962).

DC supercurrent

 $I_s = I_C \sin[\delta]$

I_C:critical current

AC current

 $V = \frac{\hbar}{2e} \frac{d\delta}{dt} \frac{1\mu V}{\omega_{J}} = 483.6 MHz$ $I = I_{C} \sin\left[\frac{2\pi}{\Phi_{0}}Vt + \delta_{0}\right]$

W.C.Stewart, Appl.Phys.Lett.12,277(1968) D.E.McCumber,J.Apple.Phys.39,3113(1968) J. A. Blackburn et. al., Physics Reports, 611, (2016).

S. Shapiro, PRL, 11(2):80, 1963.

Josephson Energy

C. D. Shelly et al., SUST, 30 095013 (2017)

B. D. Josephson Phys. Lett. (1962).

B. D. Josephson Phys. Lett. (1962).

Josephson Energy

C. D. Shelly et al., SUST, 30 095013 (2017)

V. V. Ryazanov et al., PRL. 86, 2427 (2001)

H. Sickinger et al., PRL. 109, 107002 (2012)

D. B. Szombati et al., Nat. Phys. 12, 568 (2016)

 $I_{\rm s} = I_0 \sin(\delta - \varphi_0) \quad {\rm G.S:} \, \delta = \varphi_0 \\ ({\rm with} \ 0 < \varphi_0 < \pi)$

$$I(\delta) = I_c \sin(\delta - \psi)$$

S. V. Mironov et al., PRB. 104, 134502 (2021) \rightarrow ψ junction

Slide from D. Koelle (2018)

Anomalous φ₀-JJ

φo	$= \frac{4\alpha_R LE_z}{(\hbar v_F)^2} \approx 0.01\pi \text{ (Ballistic regime -SFS)}$
Ez	= gµ _B B/2 Zeeman energy, (B=100 mT)
L	Barrier length (150 nm).
V _F	Fermi velocity (3.2×10 ⁵ m/s)
α_R	Rashba coupling (0.4 eV Å)

Rev. Lett. 101, 107005 (2008).

l:mean free path, W:width, L: length

φο	$= \frac{\tau m^{*2} E_z(\alpha L)^3}{3\hbar^6 D} \approx 0.0028\pi \text{ (Diffusive regime -SNS)}$
τ	elastic scattering time (0.13 ps)
$D=\frac{1}{3}\tau v_F^2$	diffusion constant (40 cm ² /s)
m*	= 0.25 me effective electron mass

EPL 110, 57005 (2015).

Anomalous φ₀-JJ

L≪ℓ

- $Φ_{o} = \frac{4α_{R}LE_{z}}{(\hbar v_{F})^{2}} \approx 0.01π$ (Ballistic regime -SFS)
- E_z = gµ_BB/2 Zeeman energy, (B=100 mT)
- L Barrier length (150 nm).

 $v_{\rm F}$ Fermi velocity (3.2×10⁵ m/s)

 α_R Rashba coupling (0.4 eV Å)

Rev. Lett. 101, 107005 (2008).

 $I_s | I_c sin (\phi - \phi_o)$

r strength of spin-orbit.

Rev. Lett. 101, 102, 017001 (2009).

<i>l</i> :mean free path, W:width, L: length			a S J J F	d	S F S Y
φο	$= \frac{\tau m^{*2} E_z(\alpha L)^3}{3\hbar^6 D} \approx 0.0028\pi \text{ (Diffusive regime -SNS)}$	↓ ^z	s j _s b	u/	2 d/2 TT 5 X
τ	elastic scattering time (0.13 ps)		F		
$D=\frac{1}{TV_{r}}$	$P=\frac{1}{2}\tau v_{\pi}^{2}$ diffusion constant (40 cm ² /s)				$2h_y d/v_F$
3		$\frac{u}{2}$ x		Is	$I_c(h_x) \sin(\varphi - \varphi_0)$
m*	= 0.25 me effective electron mass	ϕ_{o} (t)	-2πβ x_{o} (t)/ d_{w}	Phys. Rev. B. 100, 054506 (2019)	
EPL 110, 57005 (2015).		d_w	Domain wall width		
Yu. M. Shukrinov, PhysUsp. 65 317 (2022).		β	SOC constant	Phys. Rev. Lett. 123 207001 (2019)	

$$H_{eff} = -\frac{1}{V_F} \frac{\delta E}{\delta \mathbf{M}}, \frac{dt}{\cdot}$$

- V_F: volume of ferromagnet.
- γ: gyromagnetic ratio.
 A: Gilbert damping.

Magnetic anisotropy

 $\boldsymbol{H_{eff-ani}} = K_{an} \frac{M_z}{M_0^2} \hat{\boldsymbol{e}}_z$

$$\boldsymbol{H}_{eff-ext} = \boldsymbol{H}_R \, \sin(\omega_R t) \, \boldsymbol{\hat{e}}_{\boldsymbol{y}}$$

$$JJ - Energy$$
$$H_{eff-JJ} = r E_J \left(\sin \left(\varphi - r \frac{M_y}{M_0} \right) \right) \hat{e}_y$$

K_{an}: anisotropic constant M_o: saturation magnetization

 \vec{H}_R

S

Magnetic anisotropy

$$\boldsymbol{H_{eff-ani}} = K_{an} \frac{M_z}{M_0^2} \boldsymbol{\hat{e}}_z$$

Ac. M.F

$$\boldsymbol{H}_{eff-ext} = \boldsymbol{H}_R \, \sin(\omega_R t) \, \boldsymbol{\hat{e}}_{\boldsymbol{y}}$$

$$JJ - Energy$$
$$H_{eff-JJ} = r E_J \left(\sin \left(\varphi - r \frac{M_y}{M_0} \right) \right) \hat{e}_y$$

*K_{an}: anisotropic constant M*_o: saturation magnetization

Normalizations

$$\frac{d\mathbf{m}}{dt} = -\frac{\omega_F}{(1+\alpha^2)} \Big[\mathbf{m} \times \mathbf{h}_{eff} + \alpha \left(\mathbf{m} \times (\mathbf{m} \times \mathbf{h}_{eff}) \right) \Big] \qquad \text{LLG equation}$$

Shapiro and Locking steps

 $H_{ac} = h_{ac} \sin(\omega_R t)$

A = 0, hR =1, r = 0.5, G = 0.01, α = 0.01, ω_R = 0.485, ω_F = 0.5;

 m_y^{max} as a function of V ; (b) and (c) The time dependence of V and m_y , and the corresponding FFT analysis in the center of the bubble, respectively.

Yu. Shukrinov, et. al., PRB 109, 024511 (2024)

Locking of Josephson oscillations by the magnetic component of external radiation (MCR).

ν

1.76 *10¹¹ Hz/Tesla

Yu. Shukrinov, et. al., PRB 109, 024511 (2024)

Manifestation of two dynamical states in φ_0 -junction

Manifestation of chimera step in the IV and m_y^{max} (I), m_y^{BF} (I), m_y^{av} (I) under external electromagnetic radiation with A =0.005 and hR = 1.

M. Nashaat, et. al., PRB 110, 024510 (2024)

Manifestation of two dynamical states in φ_0 -junction

(a) The change in the m_y component dynamics in the case of the transition $m_y^+ \rightarrow m_y^-$; along with moving average; (b) and (c) show m_y (t) before the transition (state m_y^+) and after (state m_y^-); (d) and (e) magnetization trajectories in the plane x – y.

M. Nashaat, et. al., PRB 110, 024510 (2024)

Switching between dynamical states

Magnetization dynamics for m_y under rectangular pulse signal (a) decreasing current; (b) increasing current; (c)decreasing current with two successive pulses, the dashed line shows the moving average during these switching process

Manifestation of two dynamical states in φ_0 -junction

(a) The change in the m_y component dynamics in the case of the transition $m_y^+ \rightarrow m_y^-$; along with moving average; (b) and (c) show m_y (t) before the transition (state m_y^+) and after (state m_y^-); (d) and (e) magnetization trajectories in the plane x – y. Phase shift between dynamical states

(Ps): Phase shift in degree and (PC): Pearsons correlation

M. Nashaat, et. al., PRB 110, 024510 (2024)

(a) Enlarged part for Shapiro step with two loop calculation, and m_y^{BF} (I), m_y^{av} (I) at A = 0.4 and $h_R = 0$. All panels are done at r = 0.4, ω = 0.485. The green hollow arrows indicate the value of current at which the time dependence are calculated. (b) Temporal dependence and FFT for V (t) and my(t) component at I = 0.47 and I = 0.491 for increasing current direction (see hollow arrows in (a)).

M. Nashaat, et. al., PRB 110, 024510 (2024)

Buzdin step & Manifestation of dynamical states

(a) Enlarged part for Shapiro step with two loop calculation, and m_y^{BF} (I), m_y^{av} (I) at A = 0 and $h_R = 1$. All panels are done at r = 0.4, ω = 0.485. The green hollow arrows indicate the value of current at which the time dependence are calculated. (b) Temporal dependence and FFT for V (t) and my(t) component at I = 0.47 and I = 0.491 for increasing current direction (see hollow arrows in (a)).

□ Unique locking phenomena in the superconductor-ferromagnetsuperconductor φ_0 Josephson junction under external electromagnetic radiation are demonstrated.

- □ Unlike the Shapiro steps where the magnetic moment remains constant along the step, in Buzdin and chimera steps it changes though the system is locked.
- □ Implementation of two types of dynamical states of magnetization is demonstrated which have a phase shift of π in the synchronization region of magnetic precession and Josephson oscillations.
- □ Transitions between these states with increasing and decreasing bias current show hysteresis, which is reflected in the bifurcation diagram and as spikes in the current-voltage characteristics

chimera step

Российский научный фонд

