Stochastic model Quantum field theory

Random surface growth in random environment: renormalization group analysis of infinite-dimensional model

N.V. Antonov, A.A. Babakin, P.I. Kakin,

N.M. Gulitskiy

Department of Theoretical Physics, Saint Petersburg State University, Saint Petersburg, Russia

Mathematical Modeling and Computational Physics 21 of October, 2024

Physics of Elementary Particles and Statistical Physics

In this talk we deal with two areas of physic: statistical physics and high energy physics:

- Pavlik's model (extended Kardar-Parizi-Zhang model) describing the growth of the surface;
- Navier-Stokes equation describing the moving of the media;
- stochastic description of the system;
- functional integration and calculation of Feynman graphs;
- renormalization group (RG).

The problem under consideration is influence of a random environment on the dynamics of a fluctuating rough surface.

Plan of the talk

The main steps (general scheme) are following:

- stochastic formulation of the model;
- quantum field action and Feynman diagrams;
- divergences of the diagrams;
- renormalization, RG, RG flow and fixed points;
- critical dimensions at different fixed points.

Kardar-Parisi-Zhang equation

Famous (simplest non-linear) Kardar-Parisi-Zhang equation of surface growth reads

$$\partial_t h = \kappa_0 \partial^2 h + \frac{\lambda_0}{2} (\partial_i h) (\partial_i h) + \eta,$$

where $\eta = \eta(x)$ is a random Gaussian noise with zero mean $\langle \eta \rangle = 0$ and the pair correlator

$$\langle \eta(\mathbf{x}) \eta(\mathbf{x}') \rangle = B_0 \,\delta\left(t - t'\right) \,\delta^{(d)}(\mathbf{x} - \mathbf{x}').$$

Problem: the only non-trivial IR attractive fixed point has coordinate $g_*^2 = -16\pi\varepsilon$, so it is unattainable for RG flow.

Numerical simulations show that some "good" fixed point exists, so we believe that this point is non-perturbative.

Pavlik's model

One of the possible generalizations of the KPZ model was suggested by Pavlik:

$$\partial_t h = \kappa_0 \partial^2 h + U(h) + \eta$$

with $U(h) \simeq \partial^2 h^2/2 = (\partial h)^2 + h \partial^2 h$.

However, such model is not self-suficient and infinite number of non-linear terms $\partial^2 h^n$ with $n \ge 2$ must be included because all of them are equally relevant.

So, we deal with model that involve infinitely many coupling constants:

$$\partial_t h = \partial^2 V(h) + \eta, \quad V(h) = \sum_{n=1}^{\infty} \frac{1}{n!} \lambda_{n0} h^n.$$

Turbulence: Navier-Stokes equation

The advection by turbulent environment is introduced by the "minimal" replacement $\partial_t \rightarrow \nabla_t = \partial_t + (v\partial)$.

Turbulent environment is described by stochastic Navier-Stokes equation

$$\nabla_t v_i - \nu_0 \partial^2 v_i + \partial_i \wp - f_i = 0,$$

where \wp is the pressure, f_i is random force and ν_0 is the kinematic coefficient of viscosity.

Navier-Stokes equation: local term

The force ${\bf f}$ is assumed to be Gaussian with zero mean and a given pair correlation function:

$$\langle f_i(\mathbf{x})f_j(\mathbf{x}')\rangle_f = \delta(t-t')\int_{k>m} \frac{d\mathbf{k}}{(2\pi)^d} P_{ij}(\mathbf{k})D_f(k) \exp\{\mathrm{i}\mathbf{k}(\mathbf{x}-\mathbf{x}')\},$$

where P_{ij} is the transverse projector.

The correlation function $D_f(k)$ for fully developed turbulence should be chosen in power-like form (large-scale stirring):

$$D_f(k) = D_0 k^{4-d-y}, \quad D_0 > 0.$$

Navier-Stokes equation: local term

However, Pavlik's model is renormalizable in d = 2, where Navier-Stokes equation has additional divergence in function $\langle v'v' \rangle$.

To absorb this divergence we should introduce local term:

$$D_f(k) = D_0 k^{4-d-y} + D_0' k^2, \quad D_0' > 0.$$

This leads to appearance of one more coupling constant $g' = D'_0/\nu^3$ (together with $g = D_0/\nu^3$) and double y and $\varepsilon = 2 - d$ expansion.

This completes definition of the model.

Action functional: General rules

Theorem: any stochastic equation of the type

$$\partial_t \phi(x) = U(x,\phi) + f(x), \quad \langle f(x)f(x') \rangle = D(x,x'),$$

where $\phi(x) = \phi(t, \mathbf{x})$ is a random field, $U(x, \phi)$ is a *t*-local functional depending on the fields and their derivatives, f(x) is a random force, **is equivalent to quantum field model** of the double set of fields $\widetilde{\phi} = \{\phi, \phi'\}$ and action functional

$$S[\varphi] = \underbrace{\frac{1}{2}\varphi' D\varphi'}_{\text{noise term}} + \varphi' \underbrace{[-\partial_t \varphi + U]}_{\text{dynamics}},$$

integration over t and \mathbf{x} implied.

Action functional: General rules

What does it mean:

- ► statistical average is equivalent to functional integration with weight exp S[φ];
- classical random field \rightarrow quantum field;
- we may use all techniques from quantum field theory: Feynman graphs, renormalization group, operator product expansion, *etc*.

Actions functional

Quantum field action is $\mathcal{S}(\Phi) = \mathcal{S}_h(\Phi) + \mathcal{S}_v(\Phi)$, where

$$S_h(\Phi) = \frac{1}{2}h'B_0h' + h'\left[-\nabla_t h + \partial^2 V(h)\right],$$
$$S_v(\Phi) = \frac{1}{2}v_i'D_f P_{ij}v_j' + v_j'\left[-\nabla_t v_j + \nu_0\partial^2 v_j\right].$$

All integrations are implied:

$$h' \nabla_t h = \int dt \int d\mathbf{x} h'(t, \mathbf{x}) \nabla_t h(t, \mathbf{x}).$$

Renormalization

To renormalize our model we should introduce remormalization constants Z:

$$\begin{split} \lambda_{n0} &= \lambda_n Z_n, \quad \nu_0 = \nu Z_\nu, \quad g_0' = g' \mu^{\varepsilon} Z_{g'}, \quad g_{n0} = g_n \mu^{(n-1)\varepsilon/2} Z_{g_n}, \\ g_0 &= g \mu^y Z_g, \quad Z_h = Z_{h'} = Z_\nu = Z_{\nu'} = 1, \end{split}$$

where

$$g_{n0} = \lambda_{n0}/
u_0^{(n+1)/2}$$
, $g_0 = D_0/
u_0^3$ and $g_0' = D_0'/
u_0^3$ are couplings.

Renormalization

Renormalized action functional has form

$$\mathcal{S}_{hR}(\Phi) = \frac{1}{2}h'h' + h'\left\{-\nabla_t h + \partial^2 V_R(h)\right\},\,$$

$$S_{\nu R} = \frac{1}{2} \nu' \left[g \nu^3 \mu^{\gamma} k^{2+\varepsilon-\gamma} + Z_{ii} g' \nu^3 \mu^{\varepsilon} k^2 \right] \nu' + \nu' \left[-\nabla_t \nu + Z_i \nu \partial^2 \nu \right],$$

where

$$V_R(h) = \sum_{n=1}^{\infty} \frac{1}{n!} Z_n \lambda_n h^n$$
 and
 $Z_{\nu} = Z_i, \quad Z_{g_n} = Z_n Z_i^{-(n+1)/2}, \quad Z_g = Z_i^{-3}, \quad Z_{g'} = Z_{ii} Z_i^{-3}.$

Stochastic model Quantum field theory

 Z_i and Z_{ii} (Navier-Stokes term)

Renormalization constants Z_i and Z_{ii} are calculated from two graphs by usual way:

Result is

$$Z_i = 1 - \frac{g}{32\pi y} - \frac{g'}{32\pi \varepsilon} + \dots$$
$$Z_{ii} = 1 - \frac{g^2}{32\pi g'(2y - \varepsilon)} - \frac{g}{16\pi y} - \frac{g'}{32\pi \varepsilon} + \dots$$

Infinite set of Z_n

To calculate Z_n we used loop expansion of generating functional of 1-irreducible functions:

$$\Gamma_R(\Phi) = \sum_{p=0}^{\infty} \Gamma^{(p)}(\Phi), \quad \Gamma^{(0)}(\Phi) = \mathcal{S}_R(\Phi), \quad \Gamma^{(1)}(\Phi) = -\frac{1}{2} \bigg\{ \ln \frac{W}{W_0} \bigg\},$$

where

$$W(x,x') = -\frac{\delta^2 S_{hR}(\Phi)}{\delta \Phi(x) \delta \Phi(x')}.$$

There are two types of graphs with divergent terms:

N.M. Gulitskiy at al.

Infinite set of Z_n

From analysis of infinite set of these diagrams it follows that

$$\Gamma^{(1)}(\Phi) \simeq \frac{a_1}{\varepsilon} \left(\frac{\mu}{m}\right)^{\varepsilon} \int dx \, h'(x) \, \partial^2 F_1(h(x)) + a_2 \left\{ \frac{g}{y} \left(\frac{\mu}{m}\right)^y + \frac{g'}{\varepsilon} \left(\frac{\mu}{m}\right)^{\varepsilon} \right\} \int dx \, h'(x) \, \partial^2 F_2(h(x)) \, ,$$

where

$$F_1(h) = \mu^{-\varepsilon} \frac{V''(h)}{V'(h)}, \quad F_2(h) = \int_0^h d\tilde{h} \frac{\nu^2}{\nu + V'\left(\tilde{h}
ight)}$$

and

$$a_1 = rac{S_d}{4(2\pi)^d}; \qquad a_2 = rac{d-1}{2d} \cdot rac{S_d}{(2\pi)^d}.$$

Infinite set of Z_n

Since we use perturbative RG, next step is to expand these relations in powers of the field h:

$$F_1(h) = \sum_{n=0}^{\infty} \frac{1}{n!} \, \mu^{\varepsilon(n-1)/2} \, \nu^{(n+1)/2} \, r_n \, h^n,$$

$$F_{2}(h) = \sum_{n=0}^{\infty} \frac{1}{n!} \, \mu^{\varepsilon(n-1)/2} \, \nu^{(n+1)/2} \, q_{n} \, h^{n}$$

with known dimensionless coefficients r_n and q_n .

Finally, the answer is

$$Z_n = 1 - \frac{1}{8\pi\varepsilon} \frac{r_n}{g_n} - g \frac{1}{8\pi y} \frac{q_n}{g_n} - g' \frac{1}{8\pi\varepsilon} \frac{q_n}{g_n}.$$

Stochastic model Quantum field theory

Just for the case

$$\begin{aligned} r_1 &= \frac{g_3}{g_1} - \left(\frac{g_2}{g_1}\right)^2, \\ r_2 &= \frac{g_4}{g_1} - 3\frac{g_3 g_2}{g_1^2} + 2\left(\frac{g_2}{g_1}\right)^3, \\ r_3 &= \frac{g_5}{g_1} - 4\frac{g_4 g_2}{g_1^2} - 3\left(\frac{g_3}{g_1}\right)^2 + 12\frac{g_3 g_2^2}{g_1^3} - 6\left(\frac{g_2}{g_1}\right)^4; \\ q_1 &= \frac{1}{(g_1 + 1)}, \quad q_2 = \frac{-g_2}{(g_1 + 1)^2}, \quad q_3 = \frac{-g_3}{(g_1 + 1)^2} + \frac{2g_2^2}{(g_1 + 1)^3} \end{aligned}$$

and so on.

RG functions and RG equation

RG equation reads

$$\left\{\mathcal{D}_{\mu}-\beta_{g}\partial_{g}-\beta_{g'}\partial_{g'}-\sum_{n=1}^{\infty}\beta_{n}\partial_{g_{n}}-\gamma_{\nu}\right\} G(e;\ldots)=0,$$

where

$$\gamma_F = \widetilde{\mathcal{D}}_\mu \ln Z_F$$
 for any F , $\beta_g = \widetilde{\mathcal{D}}_\mu g$, $\beta_{g'} = \widetilde{\mathcal{D}}_\mu g'$, $\beta_n = \widetilde{\mathcal{D}}_\mu g_n$.
RG functions in our model reads

RG functions in our model reads

$$\begin{split} \beta_g &= g \left[-y + 3\gamma_i \right], \quad \beta_{g'} = g' \left[-\varepsilon + 3\gamma_i - \gamma_{ii} \right], \\ \beta_n &- g_n \left[-(n-1)\varepsilon/2 - \gamma_n + (n+1)\gamma_i/2 \right]. \\ \gamma_n &= \frac{1}{8\pi} \cdot \frac{r_n}{g_n} + \frac{1}{8\pi} \cdot \frac{q_n(g+g')}{g_n} \\ \gamma_i &= \frac{1}{32\pi} \left(g + g' \right), \quad \gamma_{ii} = \frac{1}{32\pi g'} \left(g + g' \right)^2. \end{split}$$

N.M. Gulitskiy at al.

Fixed points

Fixed points (attractors of the RG equation) are governed by the requirement

$$\beta_g\left(g^*,g'^*\right)=0,\quad\beta_{g'}\left(g^*,g'^*\right)=0,\quad\beta_n\left(g^*,g'^*,g_n^*\right)=0\quad(n>0).$$

For Navier-Stokes part (couplings g and g') three points exists:

(1)
$$g^* = 0$$
, $g'^* = 0$.
(2) $g^* = 0$, $g'^* = 16\pi\varepsilon$.
(3) $g^* = \frac{32\pi}{9} \frac{y(2y - 3\varepsilon)}{(y - \varepsilon)}$, $g'^* = \frac{32\pi}{9} \frac{y^2}{(y - \varepsilon)}$.

Each of them produces regime for full model, which together with expressions for r_i and q_i give two-dimensional surface (g_1^*, g_2^*) in full space of couplings.

Conclusion

We applied methods of **quantum field theory** to the Pavlik's model of surface growth together with turbulent moving of the media described by Navier-Stokes equation.

- The key point is the possibility to reformulate initial stochastic problem into some quantum field theory.
- Feynman graphs are divergent. Renormalization group allows us to work with these objects and, moreover, provides critical dimensions of measurable quantities.
- Instead original KPZ model, Pavlik's model has three "fixed points" (two-dimensional surfaces) which looks to be reachable by RG flow.
- For first (trivial) point NS and Pavlik's model decouples, therefore there is loss of universality (Δ_ω are different for both models). Othere two regimes are universal.

Research was supported by RSF grant 24-22-00220 "Quantum field theory methods in statistical physics problems: models of self-organized criticality and random walks".

For more details see arXiv:2407.13783

N.M. Gulitskiy at al.

Thank you for your attention!