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Physics of Elementary Particles and Statistical Physics

In this talk we deal with two areas of physic: statistical physics and
high energy physics:

▶ Pavlik’s model (extended Kardar-Parizi-Zhang model)
describing the growth of the surface;

▶ Navier-Stokes equation describing the moving of the media;
▶ stochastic description of the system;
▶ functional integration and calculation of Feynman graphs;
▶ renormalization group (RG).

The problem under consideration is influence of a random environment
on the dynamics of a fluctuating rough surface.
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Plan of the talk

The main steps (general scheme) are following:

▶ stochastic formulation of the model;
▶ quantum field action and Feynman diagrams;
▶ divergences of the diagrams;
▶ renormalization, RG, RG flow and fixed points;
▶ critical dimensions at different fixed points.
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Kardar-Parisi-Zhang equation

Famous (simplest non-linear) Kardar-Parisi-Zhang equation of
surface growth reads

∂th = κ0∂
2h +

λ0

2
(∂ih) (∂ih) + η,

where η = η(x) is a random Gaussian noise with zero mean ⟨η⟩ = 0
and the pair correlator

⟨η(x) η(x ′)⟩ = B0 δ
(
t − t ′

)
δ(d)(x− x ′).

Problem: the only non-trivial IR attractive fixed point has
coordinate g2

∗ = −16πε, so it is unattainable for RG flow.

Numerical simulations show that some “good” fixed point exists, so
we believe that this point is non-perturbative.
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Pavlik’s model

One of the possible generalizations of the KPZ model was
suggested by Pavlik:

∂th = κ0∂
2h + U(h) + η

with U(h) ≃ ∂2h2/2 = (∂h)2 + h∂2h.

However, such model is not self-suficient and infinite number of
non-linear terms ∂2hn with n ≥ 2 must be included because all of
them are equally relevant.

So, we deal with model that involve infinitely many coupling
constants:

∂th = ∂2V (h) + η, V (h) =
∞∑
n=1

1

n!
λn0 h

n.

N.M. Gulitskiy at al. Random surface growth in random environment 5 / 23



Stochastic model
Quantum field theory

Turbulence: Navier-Stokes equation

The advection by turbulent environment is introduced by the
“minimal” replacement ∂t → ∇t = ∂t + (v∂).

Turbulent environment is described by stochastic Navier-Stokes
equation

∇tvi − ν0∂
2vi + ∂i℘− fi = 0,

where ℘ is the pressure, fi is random force and ν0 is the kinematic
coefficient of viscosity.
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Navier-Stokes equation: local term

The force f is assumed to be Gaussian with zero mean and a given
pair correlation function:

⟨fi (x)fj(x ′)⟩f = δ(t − t ′)

∫
k>m

dk

(2π)d
Pij(k)Df (k) exp{ik(x− x′)},

where Pij is the transverse projector.

The correlation function Df (k) for fully developed turbulence
should be chosen in power-like form (large-scale stirring):

Df (k) = D0k
4−d−y , D0 > 0.
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Navier-Stokes equation: local term

However, Pavlik’s model is renormalizable in d = 2, where
Navier-Stokes equation has additional divergence in function ⟨v ′v ′⟩.

To absorb this divergence we should introduce local term:

Df (k) = D0k
4−d−y + D ′

0k
2, D ′

0 > 0.

This leads to appearance of one more coupling constant g ′ = D ′
0/ν

3

(together with g = D0/ν
3) and double y and ε = 2− d expansion.

This completes definition of the model.
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Action functional: General rules

Theorem: any stochastic equation of the type

∂tϕ(x) = U(x , ϕ) + f (x),
〈
f (x)f (x ′)

〉
= D(x , x ′),

where ϕ(x) = ϕ(t, x) is a random field, U(x , ϕ) is a t-local functional
depending on the fields and their derivatives, f (x) is a random force,
is equivalent to quantum field model of the double set of fields
ϕ̃ = {ϕ, ϕ′} and action functional

S [φ] =
1

2
φ′Dφ′︸ ︷︷ ︸

noise term

+ φ′ [−∂tφ+ U]︸ ︷︷ ︸
dynamics

,

integration over t and x implied.
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Action functional: General rules

What does it mean:

▶ statistical average is equivalent to functional integration with
weight expS [ϕ];

▶ classical random field → quantum field;

▶ we may use all techniques from quantum field theory:
Feynman graphs, renormalization group, operator product
expansion, etc.
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Actions functional

Quantum field action is S(Φ) = Sh(Φ) + Sv (Φ), where

Sh(Φ) =
1

2
h′B0h

′ + h′
[
−∇th + ∂2V (h)

]
,

Sv (Φ) =
1

2
vi

′Df Pijvj
′ + vj

′ [−∇tvj + ν0∂
2vj

]
.

All integrations are implied:

h′∇th =

∫
dt

∫
dxh′(t, x)∇th(t, x).
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Renormalization

To renormalize our model we should introduce remormalization
constants Z :

λn0 = λnZn, ν0 = νZν , g ′
0 = g ′µεZg ′ , gn0 = gnµ

(n−1)ε/2Zgn ,

g0 = gµyZg , Zh = Zh′ = Zv = Zv ′ = 1,

where

gn0 = λn0/ν
(n+1)/2
0 , g0 = D0/ν

3
0 and g ′

0 = D ′
0/ν

3
0 are couplings.
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Renormalization

Renormalized action functional has form

ShR(Φ) =
1

2
h′h′ + h′

{
−∇th + ∂2VR (h)

}
,

SvR =
1

2
v ′
[
gν3µyk2+ε−y + Ziig

′ν3µεk2
]
v ′+v ′

[
−∇tv + Ziν∂

2v
]
,

where

VR(h) =
∞∑
n=1

1

n!
Znλn h

n and

Zν = Zi , Zgn = Zn Z
−(n+1)/2
i , Zg = Z−3

i , Zg ′ = Zii Z
−3
i .
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Zi and Zii (Navier-Stokes term)

Renormalization constants Zi and Zii are calculated from two
graphs by usual way:

Result is

Zi = 1− g

32πy
− g ′

32πε
+ . . .

Zii = 1− g2

32πg ′ (2y − ε)
− g

16πy
− g ′

32πε
+ . . .
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Infinite set of Zn

To calculate Zn we used loop expansion of generating functional of
1-irreducible functions:

ΓR(Φ) =
∞∑
p=0

Γ(p)(Φ), Γ(0)(Φ) = SR(Φ), Γ(1)(Φ) = −1

2

{
ln

W

W0

}
,

where
W (x , x ′) = − δ2ShR(Φ)

δΦ(x)δΦ(x ′)
.

There are two types of graphs with divergent terms:
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Infinite set of Zn

From analysis of infinite set of these diagrams it follows that

Γ(1)(Φ) ≃ a1
ε

( µ

m

)ε
∫

dx h′(x) ∂2 F1 (h(x))+

+ a2

{
g

y

( µ

m

)y
+

g ′

ε

( µ

m

)ε
} ∫

dx h′(x) ∂2 F2 (h(x)) ,

where

F1 (h) = µ−ε V
′′(h)

V ′(h)
, F2 (h) =

∫ h

0
dh̃

ν2

ν + V ′
(
h̃
)

and
a1 =

Sd
4(2π)d

; a2 =
d − 1

2d
· Sd
(2π)d

.
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Infinite set of Zn

Since we use perturbative RG, next step is to expand these relations
in powers of the field h:

F1 (h) =
∞∑
n=0

1

n!
µε(n−1)/2 ν(n+1)/2 rn h

n,

F2 (h) =
∞∑
n=0

1

n!
µε(n−1)/2 ν(n+1)/2 qn h

n

with known dimensionless coefficients rn and qn.

Finally, the answer is

Zn = 1− 1

8πε

rn
gn

− g
1

8πy

qn
gn

− g ′ 1

8πε

qn
gn

.
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Just for the case

r1 =
g3
g1

−
(
g2
g1

)2

,

r2 =
g4
g1

− 3
g3 g2
g2
1

+ 2

(
g2
g1

)3

,

r3 =
g5
g1

− 4
g4 g2
g2
1

− 3

(
g3
g1

)2

+ 12
g3 g

2
2

g3
1

− 6

(
g2
g1

)4

;

q1 =
1

(g1 + 1)
, q2 =

−g2

(g1 + 1)2
, q3 =

−g3

(g1 + 1)2
+

2g2
2

(g1 + 1)3

and so on.
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RG functions and RG equation

RG equation reads{
Dµ − βg∂g − βg ′∂g ′ −

∞∑
n=1

βn∂gn − γν

}
G (e; . . . ) = 0,

where

γF = D̃µ lnZF for any F , βg = D̃µ g , βg ′ = D̃µ g
′, βn = D̃µ gn .

RG functions in our model reads

βg = g [−y + 3γi ] , βg ′ = g ′ [−ε+ 3γi − γii ] ,

βn − gn [−(n − 1)ε/2− γn + (n + 1)γi/2] .

γn =
1

8π
· rn
gn

+
1

8π
· qn(g + g ′)

gn

γi =
1

32π

(
g + g ′) , γii =

1

32πg ′
(
g + g ′)2 .
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Fixed points

Fixed points (attractors of the RG equation) are governed by the
requirement

βg
(
g∗, g ′∗) = 0, βg ′

(
g∗, g ′∗) = 0, βn

(
g∗, g ′∗, gn

∗) = 0 (n > 0).

For Navier-Stokes part (couplings g and g ′) three points exists:

(1) g∗ = 0 , g ′∗ = 0.

(2) g∗ = 0 , g ′∗ = 16πε.

(3) g∗ =
32π

9

y(2y − 3ε)

(y − ε)
, g ′∗ =

32π

9

y2

(y − ε)
.

Each of them produces regime for full model, which together with
expressions for ri and qi give two-dimensional surface (g∗

1 , g
∗
2 ) in

full space of couplings.
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Conclusion

We applied methods of quantum field theory to the Pavlik’s model
of surface growth together with turbulent moving of the media described
by Navier-Stokes equation.

▶ The key point is the possibility to reformulate initial stochastic
problem into some quantum field theory.

▶ Feynman graphs are divergent. Renormalization group allows
us to work with these objects and, moreover, provides critical
dimensions of measurable quantities.

▶ Instead original KPZ model, Pavlik’s model has three “fixed
points” (two-dimensional surfaces) which looks to be reachable
by RG flow.

▶ For first (trivial) point NS and Pavlik’s model decouples,
therefore there is loss of universality (∆ω are different for both
models). Othere two regimes are universal.
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Thank you for your attention!
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