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Data and Technology Before Electronic Data acquisition.
Outdated methods and problems still relevant today

Methods of mathematical 
statistics and calculations

• Hypothesis and Parameter EstimationMethods 
• Least Squares Methods
• Monte Carlo method
• Robust regression
• Radon-Hough transform
• Fourier Analysis and Wavelet Analysis
• Pattern Recognition
• Perseptrons and Hopfield Neural Networks
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▪ Bubble chambers with photo and manual measurements
▪ Measurin gsemi-automatic machines and viewing tables

Scanning machines: HPD, Spiral Reader, Sweepnik, AELT-2
▪ In CERN IBM-360/44 then CDC-6600, programming in FORTRAN language
▪ In JINR lamp KIEV, M-20, Ural-2, semiconductor Minsk-2, programs in machine code

Math problems, 
that are still relevant today

• Estimation of buffer memory capacity under pulse loading 
• Modeling of physical processes by generators of random 

numbers with specified distributions
• Recognition of smooth lines in a noise background
• Rejection of outliers in curve fitting
• Mathematical apparatus of calibration transformations
• Separation of close overlapping signals
• Finding small resonant peaks on a large noise substrate



Data, technologies and challenges 

in experimental HEP today

• LHC and NICA colliders

• Electronic data acquisition

• Pixel and strip track detectors

• World Wide Web - Internet 

• Computer farms and supercomputers

• Distributed Computing, GRID, WLCG

• Machine and Deep Learning
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Modern experiments with electronic data acquisition 

Scheme of the NICA complex with MPD, SPD, BM@N experiments

BM@N Experiment. Strip GEM 

detector inside a magnet

Tasks: reconstruction of events from 

measurement data in track and other detectorsTPC track detector inside an MPD magnet.
A simulated event from the interaction of gold ions 

generating thousands of tracks is shown
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NICA
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Data measured in experiments and problem statements

Схема установки СВМ

CBM experiment

(Germany, GSI, to be 

launched in 2025 )

Data rate:
 107event/sec,
 ~1000 tracks/event
~100 numbers per track

Total: 1 terabyte/sec!
View of simulated Au+Au events in the vertex detector

CBM problems solved by machine learning 

methods: recognition of all these RICH tracks and 

rings and estimation of their parameters, taking 

into account their overlaps, noise and optical 

distortions leading to elliptical ring 

shapes (ellipse fitting), 

particle identification, analysis of the invariant 

mass spectra of short-lived particles, search for 

resonancesA fragment of the photodetector data.

Average 1200 points forming 75 rings

Condensed

Barion

Matter

RICH

TRD
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ECAL TOF

Schematic diagram of the RICH 

detector of Cherenkov radiation

Until 2015, all these problems were solved using single hidden layer 

perceptrons, Hopfield neural networks, Kalman filter, robust methods 

and application of wavelet analysis.

Deep learning awaited new computer technologies
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Main stages of data analysis in the current HEP experiments
❖ Collect data from many channels on many sub-detectors (mln/sec)
❖ Decide whether to read or discard the event (different levels of triggers)
❖ Reconstruct event (collect all information)
❖ Send data to storage
❖ Analyze them

• distortion correction: calibration, alignment
• hit finding, tracking, vertex search,
• recognizing Cherenkov rings,
• removal of false objects (fakes)
• analysis algorithms from physicists-users
• data reduction

❖ Detailed modeling of all experiment processes
• Interaction of the beam with the target or colliding particle
• scattering when particles pass through detectors
• distortions during digitization, etc.

❖Comparison of theory and physical parameters obtained 
from experimental results
• Analysis of invariant mass spectra of short-lived particle, resonances

❖ Utilize modern computing tools to achieve the highest speed and scalability of processing

The inevitability of a worldwide Internet-based distributed computing network  (Worldwide LHC Computing Grid -WLCG)
Parallel programming of optimized algorithms  Grid-cloud technologies which changed considerably HEP data processing concept
See Scientific data management in the coming decade  https://dl.acm.org/doi/10.1145/1107499.1107503
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thanks to Anna Senger, CBM

Machine learning methods used
▪ Hough transformations,
▪ cellular automata,
▪ Kalman filter,
▪ artificial neural networks,
▪ robust estimation,
▪ wavelet analysis, etc.

G.Ososkov MMCP-2024
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What is tracking?
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XY view of LHC run 2 event

This event after tracking

Tracking or track recognition is the process of reconstructing particle trajectories in a 

HEP detector by following and connecting the hit points (a hit is the reconstructed 

detector response) that each particle leaves behind as it passes through the detector 
planes.

The tracking procedure includes phases: (1) obtaining hits (hit 

clustering), (2) constructing candidate tracks - sets of hits with 

calculated parameters (so called seeds), (3) track-following and 

(4) their fitting by the equation of the particle motion in the 
magnetic field.

On machine learning methods on the example of tracking task 
as a key problem of event reconstruction in HEP

The reconstruction should determine the vertex coordinates and particle trajectories (tracks) for each event.   

The main problem of modern tracking is the high 

luminosity of collider beams, i.e., the megahertz 

data arrival rate and the beam structure with 

bunches.



Evolution of tracking methods
It all started back in the era of bubble chambers, when events were recorded on stereo photographs 

and entered into a computer manually. Then came devices for automatically scanning photographs 

and transferring the coordinates to a computer. One of such scanning automatons was the “Spiral 

Reader”, in which the operator put a point at the event vertex, from where the image was scanned 

spirally by a narrow light slit, perceiving signals only from the event tracks
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Photo of one projection in 2-meter 

hydrogen bubble chamber.  

When the era of electronic experiments arrived, measurement data were digitized and fed directly into a 

computer. After multi-stage filtering and alignement procedures, it was time for tracking. 

One of the first tracking methods back in 1988 was the Hopfield neural network method

Its digitization in polar coordinates. Rotated histogram method



Classification of Track Reconstruction Methods

Local Tracking

Works with parts of event data (hits, track 
segments, detector parts). 

Examples: Road following, Cellular 
Automaton, Recurrent NN

Pros:
• High parallelism (individual tracks)

• Lightweight and fast

• Low memory use

Cons:

• Requires post-processing for full event 
reconstruction

• Prone to false positives (due to lack of 
full event view)

Global Tracking

Uses full event data for track reconstruction.                          

Examples: Graph Neural Networks, Hopfield 
network, Point Cloud Processing.

Pros:
• Higher quality metrics, fewer false 

positives

• Event-level parallelism possible

Cons:
• High memory requirements (entire event 

as input)
CNNs on FPGAs for Track 

Reconstruction

Graph Neural Networks in Particle Physics
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Hybrid Tracking Methods are often useful, taking advantage 

of both approaches by first applying local tracking and then 

applying global tracking to the combined output of all recognized 

event tracks
10/24/2024

https://www.semanticscholar.org/paper/CNNs-on-FPGAs-for-Track-Reconstruction-Boser-Nielsen/c5c156922f7fd00155f0ffa37b046e716763d974
https://www.semanticscholar.org/paper/CNNs-on-FPGAs-for-Track-Reconstruction-Boser-Nielsen/c5c156922f7fd00155f0ffa37b046e716763d974
https://arxiv.org/abs/2007.13681


One of the first applications of neural nets in HEP (back in 1988) was 

event reconstruction using Hopfield neural networks

The energy functional (Denby and Peterson, 1988)

consists of two parts: E = Ecost + Econstraint ,

where

encourages connections of neurons belonging to 
the same track, i.e. short adjacent segments with a 
small angle between them.

The neuron si j is introduced 

as a directed segment

connecting points i, j ...

Econstraint prohibits both inter-track 

connections (bifurcations) and excessive 

growth in the number of tracks themselves.

wijkl

10/24/2024
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Method of segments

CHALLENGE. There is a set of N experimental points in the plane. It is required to select 

(recognize) among them those that belong to continuous smooth curves (tracks).

Hopfield neural network (HNN) is a fully connected network of binary neurons si with symmetric weight 
matrix wij = wji , wii = 0. The evolution of the CNN leads it to some state of stable equilibrium.  The energy 
functional of the network is the bilinear Lyapunov function E(s) = - ½ Σij si wij sj.
Hopfield's theorem: as a result of evolution, E(s) decreases to local minima 
corresponding to the stability points of the network.
 Mean-field theory, network thermalization and the mechanism  
of “simulated annealing” are used to find the global minimum E.



Example of HNN application for recognizing 

short-lived particle events

EXCHARM experiment (Protvino, 90s) - problem: unlike Denby-Petersen, allow bifurcations 

but do not allow mass branching of tracks

Note: the appearance of even a single 

noise point would result in ~80 

additional interfering neurons

10/24/2024
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However, it was just the practical application of 

HNN for tracking that showed such 

unacceptable disadvantages of this approach

At iteration zero.

a total 

of 244 

neurons
After 30 

iteration: 

26 neurons 

with vij >0.5

as slowness of the network evolution process, high probability of the network 

energy function trapping a local minimum, and excessive sensitivity of HNN to 

noise. In addition, the known equation of particle motion in a magnetic field was not 

taken into account.



Elastic tracking. Kalman filter advantages and disadvantages
More successful were the attempts to overcome these difficulties with the help of “elastic tracking” 

methods using HNN, which combined the stages of recognition and fitting of the desired tracks. 

However  these methods required a laborious combinatorial search procedure and ceased to be effective 

with the increasing complexity of experiments and the multiplicity of events in them.

Among many tracking methods, the method using Kalman filter (KF) turned out to be the most effective, 

because it allows to easily take into account the inhomogeneity of the magnetic field, multiple scattering and 

energy losses, and the effective procedure of sequential estimation of physical parameters of the studied 

particle from the data of its measurements in the track detector, allowed to achieve the best results in terms 

of accuracy compared to other tracking methods
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A Kalman filter (KF) is an efficient recursive 

filter that estimates the state of a linear 

dynamical system using a series of imprecise 

measurements

The state vector                                                             

is iteratively estimated to predict the position of the 

track on the trace coordinate plane, taking into 

account changes in the covariance matrix and error 

corridors.

( ), , , ,
T

x yx x y t t q p=

The main disadvantage 

of KF is the need to 

know the initial value of 

the state vector X ⃗, to 

perform a very slow and 

cumbersome procedure 

of so called “seeding” 

Furthermore, KF is slow, poorly parallelized and scales poorly!



Tracking problems for modern GEM and straw-tube detectors
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The main difficulty caused by the specificity of GEM and straw-tube detectors is the appearance of fake 

counts caused by extra spurious strip crossings For n real hits one gains n𝟐- n fakes

These problems under ultra-high data arrival rates due to the high luminosity of new 

experiments inevitably required the development of new tracking methods using deep neural 

networks

The second problem is missing counts due to inefficiencies in the detectors. For 
detectors with a small number of stations, this causes tracking errors leading to 
false positive tracks (ghosts). In detectors with a small number of stations, skipping 
one hit out of three does not allow the track to be recovered in the magnetic field.

The CGEM-IT internal detector of the 

collider BESIII experiment, consisting 

of three detection cylinders

All hits of a simulated event

Although small angle between layers removes a lot of 

fakes, pretty much of them are still left



Problem Statement: The Need for Advanced Tracking Methods
Unprecedent scale of modern experiments:

• Up to 200 simultaneous proton-proton interactions is 

expected at High Luminosity Large Hadron Collider

• 200 particle tracks on average, 40K of tracks considering 

pile-up

• Traditional tracking methods cannot handle dense, 

overlapping particle tracks due to computational 

complexity and time constraints.

Deep Learning for Efficient Track Reconstruction:

• DL models can handle high-dimensional data and 

complex spatial correlations between tracks 

• Multiple scattering and inhomogeneous magnetic field 

effects could be learned from training data

• Effective parallelization using GPUs out of the box

• TrackML Challenge was launched to explore new 

scalable approaches for particles tracking

https://webific.ific.uv.es/web/en/content/taking-lhc-higher-luminosity

To cope with immense data volumes 

a new high-throughput deep-learning based approach for tracking is needed

G.Ososkov MMCP-2024
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Under high luminosity 
conditions, particles are 
accelerated not individually, 
but in groups – bunches

The same problems are expected also for the NICA 

megaproject experiments

10/24/2024

https://home.cern/science/accelerators/high-luminosity-lhc
https://www.kaggle.com/c/trackml-particle-identification
https://webific.ific.uv.es/web/en/content/taking-lhc-higher-luminosity


TrackML challenge 2018
In 2018, physicists from CERN and other physics centers around the world, including Russia, staged 
a competition - the TrackML challenge to solve a machine learning problem for particle tracking in 
high-energy physics at high luminosity (DOI 10.110TrackML dataset
9/eScience.2018.00088)

10/24/2024 G.Ososkov MMCP-2024 15

For this purpose, a source code simulator program is made 
on the Kaggle platform, where a typical all-pixel LHC 
tracking detector of 10 layers generates physical events 
(Pythia ttbar) superimposed on 200 additional collisions. 
This yields typically 10000 tracks  (100000 hits) in each 
event. Detailed view of the short strip detector of 

the TrackML challenge with a simulated 
event with 200 pile-up interactions

TrackML dataset
https://www.kaggle.com/c/trackml-particle-identification/overview

Noticeable participants:
• 1st: top-quarks – Logistic regression for pairs and triplets, helix extrapolation (8 min/event).
• 2nd: outrunner – Dense NN for pair prediction, circle fitting (3+ hrs/event).
• 3rd: Sergey Gorbunov – Triplet seeds, helix fit with magnetic field estimation (0.56 sec/event).
• 9th: CPMP – DBSCAN clustering, filtered by module frequency (10 hrs/event, 30,000+ DBSCAN runs).
• 12th: Finnies – DBSCAN seeding, LSTM for predicting next 5 hits (slow, no speed given).

Most of the solutions repeat the classical pipeline for tracking – seeding followed by trajectory fitting.

https://www.kaggle.com/c/trackml-particle-identification/overview


TrackML challenge results

The TrackML competition has stimulated a lot of research where TrackML dataset has been 
used to train and verify different tracking neuromodels

▪ Lots of graph neural network programs, e.g. https://arxiv.org/pdf/2003.11603

▪ There is also some interest in the application of Hopfield neural networks, but in 
a very different aspect, the slow evolution of the network is proposed to be 
dramatically accelerated by quantum annealing performed on a quantum D-
Wave computer https://doi.org/10.1007/s42484-021-00054-w.

▪ Moreover, it is also proposed to apply quantum annealing to accelerate graph 
neural networks arXiv:2109.12636v1 [quant-ph] 26 Sep 2021

▪ These works have in many ways stimulated new and quite promising research 
on deep tracking carried out since 2018 at JINR MLIT for experiments of the 
NICA and BES-III projects

Reports on real tracking tasks using LHC RAN 2 and 3 data have already appeared 
outside the TrackML challenge ( see, e.g., arXiv:2308.09471v1 [hep-ex] 18 Aug 2023 )
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Our achievements before the announcement of the TrackML challenge
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We used the flexibility of the GRU recurrent neural network 

architecture, which allowed us to overcome these difficulties and 

create a new end-to-end TrackNET neural network with a regression 

part of four neurons. Two neurons predict the ellipse center point on 

the next coordinate plane where the continuation of the candidate 

track should be searched for, and two more determine the semi-major 
axis of this ellipse. ( See   https://doi.org/10.1063/1.5130102)

This gives us the opportunity to train our 

model using only the true tracks that can 

be extracted from the Monte Carlo 

simulation. Thus, we have obtained a 

neural network that performs track 

tfollowing similar to the Kalman filter, 

although without the final part where track 

fitting is performed

Scheme of the recurrent TrackNETv2  NN

1. Local tracking for the GEM detector of the BM@N experiment is particularly challenging due to the 

presence of a р number of fake hits, making it extremely difficult to find those hits at subsequent detector 
stations that are extensions of the processed track.

However, the aforementioned shortcomings of local tracking meant that applying TrackNET to the simulation data of 
BM@N run 7 gave a good recall of 97% but an precision  >50%, which is unacceptable. The situation was later saved by a 
hybrid tracking approach using a graph neural network in the second run

Used Metrics:

Recall = 
𝑵𝒕𝒓𝒖𝒆
𝒓𝒆𝒄

𝑵𝒕𝒓𝒖𝒆
; Precision = 

𝑵𝒕𝒓𝒖𝒆
𝒓𝒆𝒄

𝑵𝒓𝒆𝒄

- 𝑵𝒕𝒓𝒖𝒆
𝒓𝒆𝒄 - No. of correctly reconstructed true tracks.

- 𝑵𝒕𝒓𝒖𝒆 – No. of correctly reconstructed true tracks.
- 𝑵𝒓𝒆𝒄 – Total number of reconstructed tracks.

https://doi.org/10.1063/1.5130102
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2. Global tracking. LOOT, BES-III experiment

Event as a 3D image in CNN convolutional neural networks.
In CNN, Images are 3d: height + width + RGB;
• We have data from each station - a sparse matrix of zeros and ones, where the ones indicate the occurrence of hits;
• Events are also in 3D format: Height + Width + Stations.
• Height and Width are the dimensions of the largest of the stations (usually the last one).
Our basic idea is to use OZ size instead of RGB channels.

This is a radical new approach to find the coordinates of the event vertex

A new neural network model is used
Look Once On Tracks (LOOT)
Since conventional convolutional neural networks cannot 
learn to find coordinates from input data during training, 
they are fed as input and then converted into cell indices.
The network is trained to predict track continuations to 
the next layers using a shift procedure

Goncharov et al  http://ceur-ws.org/Vol-2507/130-134-paper-22.pdf

Although the results were good on model data without fakes, 
adapting to the problems with fakes required the introduction 
of a new U-Net architecture. As a result of this work, the 
model after training predicts the Z coordinate of the primary 
event vertex with an acceptable RMS error of 1 cm The inference time of the trained model does 

not depend on the multiplicity of the event

http://ceur-ws.org/Vol-2507/130-134-paper-22.pdf
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TrackML challenge. Our results

TrackML event graph

1. Improvement of HEPTrkX GNN model  (By Yauheni Talochka) 

https://arxiv.org/pdf/2003.11603
The HEPTrkX GNN model has been substantially redesigned. 

In particular, the original structure 

has been changed to 

 These improvements allowed to reduce the memory to accommodate the event graph CPU-RAM usage from 16 GB to
3GB and keep GPU-RAM usage up to 5GB at the batch size of 8.
Additional studied how much the results deteriorate when uniformly distributed noise of 20% of the data is added.

Adapting the GNN model to datasets obtained from the MPD
experiment of the NICA project, taking into account their
specifics, is the next step in the current study.

w/o noise 20 % of noise

Accuracy 99 % 99 %

Purity & Efficiency 91 % 90 %

AUC 0.996 0.996

PyTorch Geometric

Two more reports will be given today
By Daniil Rusov and Nastya Nikolskaya

https://www.kaggle.com/c/trackml-particle-identification/overview
https://arxiv.org/pdf/2003.11603


2. Quantum algorithms for TrackML event reconstruction

The approach is similar to the classical Denby-Peterson method, i.e., finding the global minimum for the Hopfield 
network using the mean-field method, but within the framework of quantum annealing with reformulating the 
tracking problem as a quadratic unconstrained binary optimization (QUBO) using modern D-Wave type quantum 
computer in simulation mode on the HybriLIT Cluster 

By Martin Bures

The main unnovation is in using  triplets of hits as binary variables instead of just doublets and quadruplets by 
combining two triplets. It's allowed us to weaken geometric assumptions about vertices, ban  zigzagging quadruplets 
and incorporate in QUBO formulation more physical and geometric aspects. 
Calculatios use qbsolv (https://github.com/dwavesystems/qbsolv) and the neal library (classical QUBO solver).

Algorithm overview:
1) create potential doublets, filter them, 
create triplets + quadruplets, build QUBO
2) solve QUBO (qbsolv, neal library)
3) post-processing - determine the kept 
triplets from the QUBO solution, convert 
triplets back into doublets, compute metrics.

Performance timing  as a function of event density 

Event density — what proportion 

of the full event is used in the 

tracking algorithm. The TrackML

training dataset consists of 100 

events, the average number of 
particles per event is 10 792 ± 1 

256.  The number of hits per 
event is 109 675 ± 10 722.event density Num. of tracks Num. of doublets Precision (%): Recall   (%): TrackML score (%)

~10% 818 51482 99.13/99.13 97.86/97.86 98.57/98.57

~20% 1637 188662 98.80/98.57 97.17/97.64 95.94/96.90

~30% 2456 456760 99.12/98.61 97.68/97.26 96.81/96.47

~40% 3274 785624 98.30/96.94 96.75/96.28 96.20/95.80

~50% 4093 1175314 98.08/95.65 96.72/95.37 95.88/95.01
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Application of graph neural networks (GNNs).
Consider an event as a graph in which the nodes are hits. Nodes between neighboring stations can be connected by edges, 
which are possible track segments. Nodes are not connected within the same detector layer. The tracking task for graph 
neural networks (GNNs) can be formulated as a graph edge classification problem - to determine which of the segments 
belong to real tracks and which ones should be discarded as false.

Graphical representation of the C + C, 4 
GeV event of the BM@N experiment. 
Black nodes and edges correspond to 
the fakes, green nodes and edges to the 
found tracks

10/24/2024
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This scheme is similar to the well-known global Denby-Peterson approach with a 
segmented Hopfield neural network, where the neural network takes a long time to self-
train separately for each event. However GNNs, where we need to find edges that are 
segments of real tracks, can be trained on a sample of event graphs, where these edges are 
labeled with a binary vector indicating whether a particular edge is true (1) or not (0). This 
approach has been successfully implemented at CERN for model events from the pixel 
detector, but our attempts to adapt their GNN for BM@N events with a huge fake 
background failed due to the resulting memory space issues for loading the graph.

These problems disappeared when GNN was applied to the TrackNET output data 
in the second stage of tracking. By receiving as input an event represented as a 
graph of all candidate tracks generated in the first stage, GNN produced an 
acceptable tracking performance as a result

Tracking for data from high luminosity experiments. GNN for BM@N

By E.Shchavelev
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The event graph is inverted into a linear digraph when edges are represented by nodes and nodes of 

the original graph are represented by edges. In this case, information about the curvature of track segments 

is embedded in the edges of the graph, making it easier to recognize tracks in a sea of fakes and noise. In the 

process of training, the network receives as input an inverse digraph with labels of true edges - real 

track segments. The already trained GraphNet neural network as a result associates each edge with the 

value x ϵ [0,1] in the output. True path edges are those edges for which x is greater than some given 

threshold (> 0.5). (http://ceur-ws.org/Vol-2507/280-284-paper-50.pdf)

2 Tracking for data from high luminosity experiments. GNN for BES-III

collider BESIII experiment

The CGEM-IT internal detector of the 
collider BESIII experiment, consisting of 
three detection cylinders All hits of a simulated event

The presence of fakes 
and missed hits 
necessitated the use of 
a different type of GNN

Tracking efficiency estimates. Evaluation of accuracy as a share of found tracks to the 
total number of candidate tracks is useless and even dangerous, because our sample is 
very unbalanced. It is accepted to use two metrics - recall and precision. Recall is the 
fraction of true tracks that the model was able to correctly reconstruct by finding all its 
hits. Precision is the fraction of true tracks among those that the model reconstructed

By E.Shchavelev

http://ceur-ws.org/Vol-2507/280-284-paper-50.pdf


Tracking for data from high luminosity experiments. SPD NICA
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General layout of the SPD setup

SPD ( Spin Physics Detector) is being developed to study the spin structure of proton, deuteron and other spin-
related phenomena using polarized beams of protons and deuterons at collision energies up to 27 GeV and 
luminosities up to 1032 cm -2 s -1.

10/24/2024
G.Ososkov MMCP-2024

ST - Straw-Trackermodule consists of 35 
double layers of straw-tubes

Reconstruction of events from a dataset 

of time frames is required. For this 

purpose it is planned to develop an 

algorithm for online filter to process at 

least 100 time-slice per second

Event data from the SPD will be received at 3 MHz as 10 ms time-
slice data, with up to 40 events in each time-slice, i.e., one time-slice 
will contain up to 200 tracks and ~ 1100 hits per station

The calculations were performed according to a simplified simulation scheme:
• Python script generates events with 1-10 random tracks.
• Transverse momentum: 100-1000 MeV/c (uniform).
• Random vertex coordinates within the collision area.
• Trajectories follow a helical path, defined by the pitch and radius equations.
• Simulated detector with 35 stations.
• Fake and noise hits simulated using randomly sampled points in detector space.



Deep tracking for SPD NICA timeslice data
The main problems in SPD tracking are a huge number of fake signals, missed counts due to inefficiency 

of detectors and “left-right” ambiguity of straw-tubes Introducing appropriate complications in the 

TrackNET program inevitably slows down its work and reduces its efficiency.
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By fine-tuning TrackNET on the GOVORUN 

supercomputer, a processing speed of ~2000 

model events per second with acceptable 

tracking efficiency was achieved

1. On-line tracking(TrackNET) 2. Unraveling track array by events

Reconstruction of events from the time-slice dataset was performed in two stages

M.BorisovD.Rusov

The event unraveling algorithm is based on clustering of 

feature vectors, obtained using Siamese neural network.

The result is quite promising, but requires improvement 

due to insufficiently low efficiency.



Divide the detector space 
into M voxels, i.e. into 
smaller subspaces

Take the hits from each voxel and form a batch of M x N x F 
subsamples, considering that each subsample is a mini-event

N hits

M samples

F features

PCT 
model

Classifying hits into 
true and fake ones

Combine 
everything 
into one 
event

New approaches using the Point cloud transformer ( PCT) neural net

25

Input: Raw event
Output: Cleaned event

PCT= Point cloud transformer

Events 

number

40

Not 

effective

2%

Voxel 

number

512

Precision

0.98

Recall  

0.98

NUMERICAL RESULTS

2.PCT for removing fakes 
in time-slice. SPD event 
voxelization and software 
pipeline

1. PCT to determine the number of tracks in an event          (By Anastasia Nikolskaya)
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Conclusion and outlook
❖ The radical projects of recent years for high luminosity experiments (HL-LHC) 

and NICA, pose the difficult problem of particle track reconstruction in dense 
media, which requires the development of new deep tracking algorithms and 
their parallelization on supercomputers.

❖ The TrackML challenge in many ways stimulated further development of deep 
tracking methods already tested in LIT (TrackNet, Loot) and induced a number of 
new approaches.  It should be noted that research on the application of neural 
network models of transformers, which allow, in particular,  effectively filter out 
fake measurements and perform tracking on raw data, bypassing the stage with 
hits acquisition.

❖ In the more distant future, attention should also be paid to quantum annealing 
methods in applications to both global tracking and local tracking methods 
generalizing Kalman filter algorithms.

❖ On the wave of success of generative-adversarial neural networks in deepfakes
and diploma, publications on their successful application to simulate 
interactions in FWE experiments should be noted
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Thank you for your attention
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