
CAST: Center of
Advanced Software
Technologies

Sevak Sargsyan
sevak.sargsyan@rau.am
Head of the system programming
department,
Director of the CAST,
Russian-Armenian University

mailto:sevak.sargsyan@rau.am

Agenda

2

1. Who we are?

2. Our Model

3. Compiler Technologies

4. Software Analysis Technology

5. Natural Language and Speech Processing

6. Autonomous Systems

Our Model

3

1. University based research center

2. Involved in education process:

• Teach many courses

• Provide scholarships

• System programing department is under our supervision

3. Involved in industry projects:

• Have many collaboration project

4. Involves students in our projects:

• Provide supervisors for diploma, master and PhD

5. Heavily invest in new research directions (60+ researchers)

Compiler Technologies: Optimizations

4

Compiler Technologies: Optimizations

5

1. GCC – Optimal code generation for ARM architecture (patches accepted by

community)

2. LLVM – SLP vectorization, instruction scheduling

3. V8 – JIT compilation improvement for «Hot code»

4. V8 – LLVM as backend

5. Webkit – register allocation/ rematerialization

6. LLVM as backend for Postgress SQL (GitHub project)

7. GCC – Optimal code generation for RISC-V architecture

Software Analysis Technology

6

0

5000

10000

15000

20000

25000

30000

35000

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Bugs number

Software Analysis Technology

7

Software Analysis Technology

8

1. Source code clone detection

• Vulnerable third-party detection

• Copyright violation

• Old/buggy code detection

• Copy-paste errors detection

• Patch analysis

2. Binary code clone detection

• Vulnerable third-party detection

• Libraries identification

• Old/buggy code detection

• Versions change analysis

• Source to binary matching

• Debug information recovery

Software Analysis Technology

9

3. Code static analysis

• Memory leaks detection

• Buffer overflows detection

• Etc.

4. Code dynamic analysis

• Fuzzing

• Symbolic execution

5. Code analysis framework

• Code query

• Mixed analysis with several technologies

Memory Related Errors Detection

10

● Memory leak

● Use after free

● Double free Source code IR

Interprocedural flow,

field and context

sensitive analysis

Path-sensitive analysis

API API

Defects detection

Internal Representation

11

1. Nodes are IR instructions, function arguments, global

variables

2. Edges:

• Data dependence between two instructions

• Control flow between two instructions

• Function argument to user instruction

• Global variable to user instruction

list* allocateNode(char* value) {

list* node = (list*)malloc(sizeof(list));

node->value = (char*)malloc(strlen(value));

strcpy(node->value, value);

return node;

}

list* node = (list*)malloc(sizeof(list));

node->value = (char*)malloc(strlen(value));

char* value

strcpy(node->value, value);

return node;

Interprocedural Analysis

12

Library/third party functions summaries

13

We provide opportunity to

manually add functions’

summaries

• ALLOC_RETURN,

• INNER_ALLOC_RETURNED,

• DE_ALLOC_ARGUMENT,

• INNER_DE_ALLOC_ARGUMENT,

• ALLOC_IN_GLOBAL,

• DE_ALLOC_GLOBAL,

• ARGUMENT_COPY_TO_ARGUMENT,

• ARGUMENT_COPY_TO_GLOBAL,

• GLOBAL_RETURNED

• …..

Path-sensitive analysis

14

Static symbolic

executor

Path is feasible /

infeasible

Trace• Trace is a subset of functions’ basic blocks,

and also contains important basic blocks

• Symbolic executor must execute important

basic blocks

• Symbolic executor mustn’t execute other

basic blocks not in the trace

Results on Opensource Projects

15

 Confirmed :

 https://github.com/openssl/openssl/issues/20870

 https://github.com/radareorg/radare2/issues/21705

 https://github.com/radareorg/radare2/issues/21705

 https://github.com/radareorg/radare2/issues/21703

 https://github.com/tmux/tmux/issues/3554

 https://trac.ffmpeg.org/ticket/10342#comment:2

 Found about 229 defects in Top 100 C projects in github and OSS-fuzz projects, not verified

yet

https://github.com/openssl/openssl/issues/20870
https://github.com/radareorg/radare2/issues/21705
https://github.com/radareorg/radare2/issues/21705
https://github.com/radareorg/radare2/issues/21703
https://github.com/tmux/tmux/issues/3554
https://trac.ffmpeg.org/ticket/10342#comment:2

Code Dynamic Analysis: Fuzzing

16

1. Dumb fuzzing

2. Smart fuzzing

3. Fuzzing can’t generate structured data

Fuzzing tool example: AFL is smart fuzzing tool based on

genetic algorithm.

Input data queue

Initial input

Runtime Environment

Target program

Code coverage Input data

Code Dynamic Analysis: Fuzzing

17

1. BNF grammar fuzzing

2. Directed fuzzing

3. API calls (calls chain) fuzzing

4. Network fuzzing

5. Hybrid fuzzing (DSE + SA + Fuzzing)

6. Fuzzing improvement based on extracted constant values (Huawei)

Compiler Technologies: Obfuscation

18

Compiler Technologies: Obfuscation

19

Code obfuscation can be used for:

1. Software security improvements

2. Protection from reverse engineering

LLVM based source code obfuscator (data and control flaw obfuscation):

1. Functions merging

2. Local variables reordering on stack

3. Addition of redundant calculation

4. Addition of branching instruction

5. Addition of extra functions call

Metrics to calculate possible slow down for each type of change.

Autonomous
Systems

20

Object Detection

Object detection from drones involves the use of advanced

computer vision techniques to identify and locate specific

objects or targets within the captured aerial imagery,

enabling applications such as surveillance, search and rescue,

and environmental monitoring.

Object tracking from drones employs sophisticated

algorithms to continuously monitor and follow

specific targets within the captured aerial footage,

ensuring real-time updates on their movement and

location. This capability is instrumental in tasks like

tracking vehicles during traffic analysis, and

enhancing the efficiency of search operations.

Object Tracking

Coordinate Extraction

Project uses a drone equipped with a camera, gimbal, rangefinder, telemetry,

GPS, and IMU modules. The drone's camera sends real-time video to a ground

station, where an operator can select a specific object of interest. Once the

operator selects the object, the drone extract its coordinates.

Stitching
The goal of this project is to create an image stitching algorithm capable of

seamlessly combining extensive collections of aerial images captured by a

swarm of drones. This process aims to generate a comprehensive 2D map that

accurately represents the monitored area.

Change Detection

Change Detection aims to identify changes that occur in an image pair taken different times in the same region. Different

Deep Learning methods have been considered and tested one of which was proposed by the Change Detection team. The

rest are state-of the art methods in the field with some modifications. Future work includes data collection and testing

more algorithms available.

Visual Navigation

This project aims real time Visual Inertial Navigation on Robot Operating System 2, synchronizing image frames with

Inertial Measurement Unit data.

Payload at Wind

The initial goal of this project is to compensate drag forces while

payload delivery. Its based on drag calculation that involves wind

estimation and provides analytical solution to the problem. The

project can be scaled to a small desktop application which

visualizes active drag forces on payload and possible drop

location.

Aerodynamics

This project aims to conduct a comprehensive aerodynamic analysis of a model plane,

focusing on evaluating key flight performance parameters. Through meticulous

experimentation and computational simulations, the aerodynamic characteristics including

lift, drag, and stability will be thoroughly examined. Development of an environment for

modeling the dynamics of flying robotic systems based on aerodynamic analysis.

Simulation

Our goal is to develop a flight simulator based on

Unreal Engine, which will provide the opportunity

to carry out realistic and safe experiments for

autonomous flight systems.

Drone Swarm

The project aims to devise an efficient algorithm that strategically allocates

multiple drones to cover the specified area in the shortest possible time,

considering factors like drone speed, area geometry, and obstacle

avoidance. By optimizing the distribution and movement of drones, the

project seeks to enhance overall coverage effectiveness and minimize

operational time.

Solution consists of two parts:
1. Dividing the area into parts.
2. Finding the optimal path for each divided area.

32

Methodology: Drone Swarm

AI in health

33

12-lead ECG analysis with data transformation

34

Data

transformation

Model

training

ResNet

DenseNetElectrocardiogram plot

Spectrogram representation
Scalogram representation

Raw data:
12-lead ECG signals

(time series)

12-lead ECG analysis: Results

35

Model 2

Model 1

Model 3

Model 2

Model 1

Model 3

AFIB: Atrial fibrillation

1AVB: First-degree atrioventricular block

RBBB: Right bundle branch block

LBBB: Left bundle branch block

Comparison of the obtained metrics on PTB-XL dataset

STACH: Sinus tachycardia

SBRAD: Sinus bradycardia

PVC: Premature ventricular contraction

AI based speech technologies

36

Demo https://wav.am/

https://wav.am/

Thank You!

37

	Slide 1: CAST: Center of Advanced Software Technologies
	Slide 2: Agenda
	Slide 3: Our Model
	Slide 4: Compiler Technologies: Optimizations
	Slide 5: Compiler Technologies: Optimizations
	Slide 6: Software Analysis Technology
	Slide 7: Software Analysis Technology
	Slide 8: Software Analysis Technology
	Slide 9: Software Analysis Technology
	Slide 10: Memory Related Errors Detection
	Slide 11: Internal Representation
	Slide 12: Interprocedural Analysis
	Slide 13: Library/third party functions summaries
	Slide 14: Path-sensitive analysis
	Slide 15: Results on Opensource Projects
	Slide 16: Code Dynamic Analysis: Fuzzing
	Slide 17: Code Dynamic Analysis: Fuzzing
	Slide 18: Compiler Technologies: Obfuscation
	Slide 19: Compiler Technologies: Obfuscation
	Slide 20: Autonomous Systems
	Slide 21
	Slide 22
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: AI in health
	Slide 34: 12-lead ECG analysis with data transformation
	Slide 35: 12-lead ECG analysis: Results
	Slide 36: AI based speech technologies
	Slide 37: Thank You!

